Compare commits

..

3 Commits

Author SHA1 Message Date
Philip Müller
964900ab87 [officechooser] update text 2019-08-24 16:11:04 -04:00
Philip Müller
182cdb59f3 [version] 3.2.12.1 2019-08-24 14:44:47 -04:00
Philip Müller
12d23115f4 [officechooser] update text and pics 2019-08-24 14:43:59 -04:00
1783 changed files with 184348 additions and 526872 deletions

View File

@ -1,5 +1,3 @@
# SPDX-FileCopyrightText: no
# SPDX-License-Identifier: CC0-1.0
---
BasedOnStyle: WebKit
@ -8,7 +6,6 @@ AlignEscapedNewlines: DontAlign
AllowAllParametersOfDeclarationOnNextLine: "false"
AllowShortFunctionsOnASingleLine: Inline
AllowShortIfStatementsOnASingleLine: "false"
AllowShortLambdasOnASingleLine: All
AllowShortLoopsOnASingleLine: "false"
AlwaysBreakAfterReturnType: TopLevelDefinitions
AlwaysBreakTemplateDeclarations: Yes
@ -22,16 +19,14 @@ Cpp11BracedListStyle: "false"
FixNamespaceComments: "true"
IncludeBlocks: Preserve
IndentWidth: "4"
InsertBraces: "true"
MaxEmptyLinesToKeep: "2"
NamespaceIndentation: None
PointerAlignment: Left
ReflowComments: "false"
SortIncludes: "true"
SpaceAfterCStyleCast: "false"
SpaceInEmptyBlock: "false"
SpacesBeforeTrailingComments: "2"
SpacesInAngles: "true"
SpacesInParentheses: "true"
SpacesInSquareBrackets: "true"
Standard: c++17
Standard: Cpp11

View File

@ -1,5 +1,4 @@
# SPDX-FileCopyrightText: no
# SPDX-License-Identifier: CC0-1.0
# http://EditorConfig.org
root = true
@ -8,22 +7,7 @@ charset = utf-8
end_of_line = lf
trim_trailing_whitespace = true
[CMakeLists.txt]
indent_style = space
indent_size = 4
insert_final_newline = true
[*.cmake]
indent_style = space
indent_size = 4
insert_final_newline = true
[*.{py,cpp,h}]
indent_style = space
indent_size = 4
insert_final_newline = true
[*.sh]
indent_style = tab
insert_final_newline = true

View File

@ -1,10 +0,0 @@
# SPDX-FileCopyrightText: no
# SPDX-License-Identifier: CC0-1.0
#
# Gersemi configuration
color: false
definitions: [ CMakeModules/CalamaresAddTest.cmake ]
line_length: 120
quiet: false
unsafe: false

View File

@ -1,5 +0,0 @@
# SPDX-FileCopyrightText: no
# SPDX-License-Identifier: CC0-1.0
#
18fef8dfe5d926ec0bc979562553adf4db8db2e9
874a0c1f38b0da4e5bc83083b13a63b1c7eed935

3
.gitattributes vendored
View File

@ -1,6 +1,3 @@
# SPDX-FileCopyrightText: no
# SPDX-License-Identifier: CC0-1.0
.editorconfig export-ignore
.gitattributes export-ignore
.github export-ignore

View File

@ -1,63 +0,0 @@
---
name: Usability testing
about: Propose a usability test to help us
---
# Objective
The test goals. e.g.: Evaluate the language selection and the partitioning configurations.
# Requirements
## Environment
What is the environment that should be tested and how it should be prepared. e.g.: The test needs to run in the release 3.32.34 installing Manjaro.
## User profile
Describe the target users you are looking for the test. e.g.: A user that has already used a system-installer.
## Facilitator
What the facilitator should be familiar with to run the tests. e.g.: The facilitator needs to know how to build Calamares to be able to run the tests.
# Test design
## Tasks
A list of tasks that the user has to perform. e.g.:
* Use another language.
* Change partitioning configurations.
## Scenarios
A list of scenarios for the user to perform the tasks. They should put the user in a context and not give specific hints about what you want the user to do. e.g.:
1. You want to change the installer language to English. Please, look for this option in the application.
2. You are a big fan of a lot of distributions and want to have some space left to install other distributions in your disk after this installation. Please, resize your disk to have 35GB of space left.
<!--
## Results
Uncomment this session once you have your results.
### Summary
| - | User 1 | User 2 | User 3 | User 4 | User 5 |
|:------:|:------:|:--------:|:------------------:|:------:|:------:|
| Task 1 | :x: | :question: | :heavy_check_mark: | :x: | :heavy_check_mark: |
| Task 2 | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
| Task 3 | :heavy_check_mark: | :heavy_check_mark: | :x: | :heavy_check_mark: | :heavy_check_mark: |
| Task 4 | :heavy_check_mark: | :question: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
### Task 1
#### What went well?
Describe what happened as expected. e.g.: Most users intuitively found the language selector for changing the installer language.
#### What were the challenges?
Describe where the users had issues and why. Try to write the details to ensure a good understanding of what happened. You can also attach videos, GIFs, or screenshots to illustrate. e.g.: Two of the users had issues searching for English on the language selector because they didn't realize they could scroll down to find it.
### Task 2
#### What went well?
Describe what happened as expected. e.g.: Most users intuitively found the language selector for changing the installer language.
#### What were the challenges?
Describe where the users had issues and why. Try to write the details to ensure a good understanding of what happened. You can also attach videos, GIFs, or screenshots to illustrate. e.g.: Two of the users had issues searching for English on the language selector because they didn't realize they could scroll down to find it.
-->

View File

@ -1,18 +0,0 @@
name: issues
on:
issues:
types: [opened, reopened, closed]
jobs:
notify:
runs-on: ubuntu-latest
steps:
- name: "remove in-progress label"
if: github.event.issue.state != 'open'
run: |
curl -X DELETE \
-H 'Accept: application/vnd.github.v3+json' \
-H 'Authorization: Bearer ${{ secrets.GITHUB_TOKEN }}' \
"https://api.github.com/repos/${{ github.repository }}/issues/${{ github.event.issue.number }}/labels/hacking%3A%20in-progress"

View File

@ -1,36 +0,0 @@
name: nightly-debian-11
on:
schedule:
- cron: "12 23 * * *"
workflow_dispatch:
env:
BUILDDIR: /build
SRCDIR: ${{ github.workspace }}
CMAKE_ARGS: |
-DKDE_INSTALL_USE_QT_SYS_PATHS=ON
-DCMAKE_BUILD_TYPE=Debug
-DBUILD_APPSTREAM=ON
-DBUILD_APPDATA=ON
jobs:
build:
runs-on: ubuntu-latest
container:
image: docker://debian:11
options: --tmpfs /build:rw --user 0:0
steps:
- name: "prepare git"
shell: bash
run: |
apt-get update
apt-get -y install git-core jq curl
- name: "prepare source"
uses: calamares/actions/generic-checkout@v5
- name: "install dependencies"
shell: bash
run: ./ci/deps-debian11.sh
- name: "build"
shell: bash
run: ./ci/build.sh

View File

@ -1,36 +0,0 @@
name: nightly-fedora-qt6-boost
on:
schedule:
- cron: "52 2 * * *"
workflow_dispatch:
env:
BUILDDIR: /build
SRCDIR: ${{ github.workspace }}
CMAKE_ARGS: |
-DKDE_INSTALL_USE_QT_SYS_PATHS=ON
-DCMAKE_BUILD_TYPE=Debug
-DWITH_QT6=ON
-DBUILD_APPSTREAM=ON
-DBUILD_APPDATA=ON
-DWITH_PYBIND11=OFF
jobs:
build:
runs-on: ubuntu-latest
container:
image: docker://registry.fedoraproject.org/fedora:40
options: --tmpfs /build:rw --user 0:0
steps:
- name: "prepare git"
shell: bash
run: yum install -y git-core jq curl
- name: "prepare source"
uses: calamares/actions/generic-checkout@v5
- name: "install dependencies"
shell: bash
run: ./ci/deps-fedora-qt6-boost.sh
- name: "build"
shell: bash
run: ./ci/build.sh

View File

@ -1,35 +0,0 @@
name: nightly-fedora-qt6
on:
schedule:
- cron: "52 2 * * *"
workflow_dispatch:
env:
BUILDDIR: /build
SRCDIR: ${{ github.workspace }}
CMAKE_ARGS: |
-DKDE_INSTALL_USE_QT_SYS_PATHS=ON
-DCMAKE_BUILD_TYPE=Debug
-DWITH_QT6=ON
-DBUILD_APPSTREAM=ON
-DBUILD_APPDATA=ON
jobs:
build:
runs-on: ubuntu-latest
container:
image: docker://registry.fedoraproject.org/fedora:40
options: --tmpfs /build:rw --user 0:0
steps:
- name: "prepare git"
shell: bash
run: yum install -y git-core jq curl
- name: "prepare source"
uses: calamares/actions/generic-checkout@v5
- name: "install dependencies"
shell: bash
run: ./ci/deps-fedora-qt6.sh
- name: "build"
shell: bash
run: ./ci/build.sh

View File

@ -1,37 +0,0 @@
name: nightly-opensuse
on:
schedule:
- cron: "32 23 * * *"
workflow_dispatch:
env:
BUILDDIR: /build
SRCDIR: ${{ github.workspace }}
CMAKE_ARGS: |
-DKDE_INSTALL_USE_QT_SYS_PATHS=ON
-DCMAKE_BUILD_TYPE=Debug
-DBUILD_SCHEMA_TESTING=ON
-DBUILD_TESTING=ON
-DBUILD_APPSTREAM=ON
-DBUILD_APPDATA=ON
-DWITH_QT6=ON
jobs:
build:
runs-on: ubuntu-latest
container:
image: docker://opensuse/tumbleweed
options: --tmpfs /build:rw --user 0:0
steps:
- name: "prepare git"
shell: bash
run: zypper --non-interactive in git-core jq curl
- name: "prepare source"
uses: calamares/actions/generic-checkout@v5
- name: "install dependencies"
shell: bash
run: ./ci/deps-opensuse-qt6.sh
- name: "build"
shell: bash
run: ./ci/build.sh

View File

@ -1,36 +0,0 @@
name: nightly-ubuntu
on:
schedule:
- cron: "12 23 * * *"
workflow_dispatch:
env:
BUILDDIR: /build
SRCDIR: ${{ github.workspace }}
CMAKE_ARGS: |
-DKDE_INSTALL_USE_QT_SYS_PATHS=ON
-DCMAKE_BUILD_TYPE=Debug
-DBUILD_APPSTREAM=ON
-DBUILD_APPDATA=ON
jobs:
build:
runs-on: ubuntu-latest
container:
image: docker://ubuntu:devel
options: --tmpfs /build:rw --user 0:0
steps:
- name: "prepare git"
shell: bash
run: |
apt-get update
apt-get -y install git-core jq curl ninja-build
- name: "prepare source"
uses: calamares/actions/generic-checkout@v5
- name: "install dependencies"
shell: bash
run: ./ci/deps-ubuntu.sh
- name: "build"
shell: bash
run: ./ci/build.sh

View File

@ -1,43 +0,0 @@
name: ci-push
on:
push:
branches:
- calamares
pull_request:
types:
- opened
- reopened
- synchronize
workflow_dispatch:
env:
BUILDDIR: /build
SRCDIR: ${{ github.workspace }}
CMAKE_ARGS: |
-DKDE_INSTALL_USE_QT_SYS_PATHS=ON
-DCMAKE_BUILD_TYPE=Debug
-DWITH_QT6=ON
-DBUILD_APPSTREAM=ON
-DBUILD_APPDATA=ON
GIT_HASH: ${{ github.event.head_commit.id }}
jobs:
build:
runs-on: ubuntu-latest
container:
image: docker://registry.fedoraproject.org/fedora:40
options: --tmpfs /build:rw --user 0:0
steps:
- name: "prepare git"
shell: bash
run: yum install -y git-core jq curl
- name: "prepare source"
uses: calamares/actions/generic-checkout@v5
- name: "install dependencies"
shell: bash
run: ./ci/deps-fedora-qt6.sh
- name: "build"
shell: bash
run: ./ci/build.sh

View File

@ -1,47 +0,0 @@
name: weekly-debian-11
on:
schedule:
- cron: "12 11 * * 3"
workflow_dispatch:
env:
BUILDDIR: /build
SRCDIR: ${{ github.workspace }}
CMAKE_ARGS: |
-DKDE_INSTALL_USE_QT_SYS_PATHS=ON
-DCMAKE_BUILD_TYPE=Debug
-DBUILD_APPSTREAM=ON
-DBUILD_APPDATA=ON
-DBUILD_TESTING=ON
jobs:
build:
runs-on: ubuntu-latest
container:
image: docker://debian:11
options: --tmpfs /build:rw --user 0:0
steps:
- name: "prepare git"
shell: bash
run: |
apt-get update
apt-get -y install git-core jq curl
apt-get -y install pylint python3-pylint-common
- name: "prepare source (core)"
uses: calamares/actions/generic-checkout@v5
- name: "prepare source (extensions)"
shell: bash
run: git clone https://github.com/calamares/calamares-extensions.git ${SRCDIR}/calamares-extensions
- name: "install dependencies"
shell: bash
run: ./ci/deps-debian11.sh
- name: "build (core)"
shell: bash
run: ./ci/build.sh
- name: "build (extensions)"
shell: bash
run: BUILDDIR=/build/calamares-extensions SRCDIR=${SRCDIR}/calamares-extensions ./ci/build.sh
- name: "test (core)"
shell: bash
run: ctest --test-dir /build -V

5
.gitignore vendored
View File

@ -1,6 +1,3 @@
# SPDX-FileCopyrightText: no
# SPDX-License-Identifier: CC0-1.0
#
# C++ objects and libs
*.slo
@ -50,8 +47,6 @@ CMakeLists.txt.user
# Backup files
*~
*.bak
# Kate
*.kate-swp
tags

View File

@ -1,94 +0,0 @@
Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: Calamares
Source: https://github.com/calamares/calamares.git
### ACTUAL LICENSES
#
# Images in the locale module are a bit unclear; they were added
# by Teo in 2014 but I suspect they came from somewhere else.
#
Files: src/modules/locale/images/timezone*.png
License: GPL-3.0-or-later
Copyright: 2014 Teo Mrnjavac <teo@kde.org>
Files: man/calamares.8
License: GPL-3.0-or-later
Copyright: 2017 Jonathan Carter <jcarter@linux.com>
Files: 3rdparty/kdsingleapplication/*
License: MIT
Copyright: Copyright (C) 2019-2021 Klarälvdalens Datakonsult AB, a KDAB Group company, info@ kdab.com
### BUILD ARTIFACTS / NOT SOURCE
#
# QRC Files are basically build artifacts
#
FILES: src/modules/*/*.qrc
License: CC0-1.0
Copyright: no
# GitHub issue templates are not part of the source
#
Files: .github/ISSUE_TEMPLATE/*
License: CC0-1.0
Copyright: no
# GitHub actions are not part of the source
Files: .github/workflows/*.yml
License: CC0-1.0
Copyright: no
# Packaging information
#
Files: data/FreeBSD/distinfo data/FreeBSD/pkg-descr data/FreeBSD/pkg-plist
License: CC0-1.0
Copyright: no
# Example data for timezones, which is copied out of zoneinfo,
# which has this notice:
#
# This file is in the public domain, so clarified as of
# 2009-05-17 by Arthur David Olson.
#
Files: data/example-root/usr/share/zoneinfo/Zulu data/example-root/usr/share/zoneinfo/UTC data/example-root/usr/share/zoneinfo/America/New_York
License: CC0-1.0
Copyright: no
# Test data
#
# These first files are mere lists of locale identifiers
Files: src/modules/locale/tests/locale-data-neon src/modules/locale/tests/locale-data-freebsd
License: CC0-1.0
Copyright: no
### TRANSLATIONS
#
# .desktop files and template change only with translation
#
FILES: calamares.desktop*
License: CC0-1.0
Copyright: no
# Transifex translations derive from the source, and have no
# embedded copyright information.
#
Files: lang/*.ts
License: GPL-3.0-or-later
Copyright: 2020 Calamares authors and translators
# Translations of branding slideshow are the same
Files: src/branding/default/lang/*.ts
License: GPL-3.0-or-later
Copyright: 2020 Calamares authors and translators
# Python translation files have some copyright information, but
# it's generally very sketchy.
#
Files: lang/python.pot
License: GPL-3.0-or-later
Copyright: 2020 Calamares authors and translators
Files: lang/python/*/LC_MESSAGES/python.po
License: GPL-3.0-or-later
Copyright: 2020 Calamares authors and translators

View File

@ -1,6 +1,3 @@
# SPDX-FileCopyrightText: no
# SPDX-License-Identifier: CC0-1.0
#
language: cpp
python:
@ -19,5 +16,5 @@ install:
- docker build -t calamares .
script:
- docker run -v $PWD:/src --tmpfs /build:rw,size=112M -e SRCDIR=/src -e BUILDDIR=/build calamares "/src/ci/travis.sh"
- docker run -v $PWD:/src --tmpfs /build:rw,size=81920k -e SRCDIR=/src -e BUILDDIR=/build calamares "/src/ci/travis.sh"

View File

@ -1,24 +1,26 @@
# SPDX-FileCopyrightText: no
# SPDX-License-Identifier: CC0-1.0
[main]
host = https://app.transifex.com
host = https://www.transifex.com
[o:calamares:p:calamares:r:calamares]
[calamares.calamares-master]
file_filter = lang/calamares_<lang>.ts
source_file = lang/calamares_en.ts
source_lang = en
type = QT
type = QT
[o:calamares:p:calamares:r:fdo]
[calamares.dummypythonqt]
file_filter = src/modules/dummypythonqt/lang/<lang>/LC_MESSAGES/dummypythonqt.po
source_file = src/modules/dummypythonqt/lang/dummypythonqt.pot
source_lang = en
[calamares.fdo]
file_filter = lang/desktop_<lang>.desktop
source_file = calamares.desktop
source_lang = en
type = DESKTOP
type = DESKTOP
[o:calamares:p:calamares:r:python]
[calamares.python]
file_filter = lang/python/<lang>/LC_MESSAGES/python.po
source_file = lang/python.pot
source_lang = en
type = PO
type = PO

View File

@ -1,26 +0,0 @@
set(KDSINGLEAPPLICATION_STATIC ON)
set(KDSINGLEAPPLICATION_SRCS kdsingleapplication.cpp kdsingleapplication_localsocket.cpp)
set(KDSINGLEAPPLICATION_INSTALLABLE_INCLUDES kdsingleapplication.h kdsingleapplication_lib.h)
set(KDSINGLEAPPLICATION_NON_INSTALLABLE_INCLUDES kdsingleapplication_localsocket_p.h)
if(KDSINGLEAPPLICATION_STATIC)
add_library(kdsingleapplication STATIC ${KDSINGLEAPPLICATION_INSTALLABLE_INCLUDES} ${KDSINGLEAPPLICATION_SRCS})
target_compile_definitions(kdsingleapplication PUBLIC KDSINGLEAPPLICATION_STATIC_BUILD)
else()
add_library(kdsingleapplication SHARED ${KDSINGLEAPPLICATION_INSTALLABLE_INCLUDES} ${KDSINGLEAPPLICATION_SRCS})
target_compile_definitions(kdsingleapplication PRIVATE KDSINGLEAPPLICATION_SHARED_BUILD)
endif()
set_target_properties( kdsingleapplication PROPERTIES AUTOMOC TRUE )
set(KDSINGLEAPPLICATION_INCLUDEDIR ${CMAKE_INSTALL_INCLUDEDIR}/kdsingleapplication)
target_include_directories(
kdsingleapplication
PUBLIC $<INSTALL_INTERFACE:${KDSINGLEAPPLICATION_INCLUDEDIR}> $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}>
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}
)
target_link_libraries(kdsingleapplication ${qtname}::Core ${qtname}::Network)

View File

@ -1,22 +0,0 @@
MIT License
Copyright (C) 2019-2021 Klarälvdalens Datakonsult AB, a KDAB Group company, info@kdab.com
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -1,123 +0,0 @@
/*
MIT License
Copyright (C) 2019-2021 Klarälvdalens Datakonsult AB, a KDAB Group company, info@kdab.com
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#include "kdsingleapplication.h"
#include <QtCore/QCoreApplication>
#include <QtCore/QFileInfo>
// TODO: make this pluggable.
#include "kdsingleapplication_localsocket_p.h"
// Avoiding dragging in Qt private APIs for now, so this does not inherit
// from QObjectPrivate.
class KDSingleApplicationPrivate
{
public:
explicit KDSingleApplicationPrivate(const QString &name, KDSingleApplication *q);
void initialize();
QString name() const
{
return m_name;
}
bool isPrimaryInstance() const
{
return m_impl.isPrimaryInstance();
}
bool sendMessage(const QByteArray &message, int timeout)
{
return m_impl.sendMessage(message, timeout);
}
private:
Q_DECLARE_PUBLIC(KDSingleApplication)
KDSingleApplication *q_ptr;
QString m_name;
KDSingleApplicationLocalSocket m_impl;
};
KDSingleApplicationPrivate::KDSingleApplicationPrivate(const QString &name, KDSingleApplication *q)
: q_ptr(q)
, m_name(name)
, m_impl(name)
{
if (Q_UNLIKELY(name.isEmpty()))
qFatal("KDSingleApplication requires a non-empty application name");
if (isPrimaryInstance()) {
QObject::connect(&m_impl, &KDSingleApplicationLocalSocket::messageReceived,
q, &KDSingleApplication::messageReceived);
}
}
static QString extractExecutableName(const QString &applicationFilePath)
{
return QFileInfo(applicationFilePath).fileName();
}
KDSingleApplication::KDSingleApplication(QObject *parent)
: KDSingleApplication(extractExecutableName(QCoreApplication::applicationFilePath()), parent)
{
}
KDSingleApplication::KDSingleApplication(const QString &name, QObject *parent)
: QObject(parent)
, d_ptr(new KDSingleApplicationPrivate(name, this))
{
}
QString KDSingleApplication::name() const
{
Q_D(const KDSingleApplication);
return d->name();
}
bool KDSingleApplication::isPrimaryInstance() const
{
Q_D(const KDSingleApplication);
return d->isPrimaryInstance();
}
bool KDSingleApplication::sendMessage(const QByteArray &message)
{
return sendMessageWithTimeout(message, 5000);
}
bool KDSingleApplication::sendMessageWithTimeout(const QByteArray &message, int timeout)
{
Q_ASSERT(!isPrimaryInstance());
Q_D(KDSingleApplication);
return d->sendMessage(message, timeout);
}
KDSingleApplication::~KDSingleApplication() = default;

View File

@ -1,62 +0,0 @@
/*
MIT License
Copyright (C) 2019-2021 Klarälvdalens Datakonsult AB, a KDAB Group company, info@kdab.com
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#ifndef KDSINGLEAPPLICATION_H
#define KDSINGLEAPPLICATION_H
#include <QtCore/QObject>
#include <memory>
#include "kdsingleapplication_lib.h"
class KDSingleApplicationPrivate;
class KDSINGLEAPPLICATION_EXPORT KDSingleApplication : public QObject
{
Q_OBJECT
Q_PROPERTY(QString name READ name CONSTANT)
Q_PROPERTY(bool isPrimaryInstance READ isPrimaryInstance CONSTANT)
public:
explicit KDSingleApplication(QObject *parent = nullptr);
explicit KDSingleApplication(const QString &name, QObject *parent = nullptr);
~KDSingleApplication();
QString name() const;
bool isPrimaryInstance() const;
public Q_SLOTS:
// avoid default arguments and overloads, as they don't mix with connections
bool sendMessage(const QByteArray &message);
bool sendMessageWithTimeout(const QByteArray &message, int timeout);
Q_SIGNALS:
void messageReceived(const QByteArray &message);
private:
Q_DECLARE_PRIVATE(KDSingleApplication)
std::unique_ptr<KDSingleApplicationPrivate> d_ptr;
};
#endif // KDSINGLEAPPLICATION_H

View File

@ -1,37 +0,0 @@
/*
MIT License
Copyright (C) 2019-2021 Klarälvdalens Datakonsult AB, a KDAB Group company, info@kdab.com
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#ifndef KDSINGLEAPPLICATION_LIB_H
#define KDSINGLEAPPLICATION_LIB_H
#include <QtCore/QtGlobal>
#if defined(KDSINGLEAPPLICATION_STATIC_BUILD)
#define KDSINGLEAPPLICATION_EXPORT
#elif defined(KDSINGLEAPPLICATION_SHARED_BUILD)
#define KDSINGLEAPPLICATION_EXPORT Q_DECL_EXPORT
#else
#define KDSINGLEAPPLICATION_EXPORT Q_DECL_IMPORT
#endif
#endif // KDSINGLEAPPLICATION_LIB_H

View File

@ -1,304 +0,0 @@
/*
MIT License
Copyright (C) 2019-2021 Klarälvdalens Datakonsult AB, a KDAB Group company, info@kdab.com
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#include "kdsingleapplication_localsocket_p.h"
#include <QtCore/QDir>
#include <QtCore/QDeadlineTimer>
#include <QtCore/QTimer>
#include <QtCore/QLockFile>
#include <QtCore/QDataStream>
#include <QtCore/QtDebug>
#include <QtCore/QLoggingCategory>
#include <QtNetwork/QLocalServer>
#include <QtNetwork/QLocalSocket>
#include <chrono>
#include <algorithm>
#if defined(Q_OS_UNIX)
// for ::getuid()
#include <sys/types.h>
#include <unistd.h>
#endif
#if defined(Q_OS_WIN)
#include <qt_windows.h>
#endif
static const auto LOCALSOCKET_CONNECTION_TIMEOUT = std::chrono::seconds(5);
static const char LOCALSOCKET_PROTOCOL_VERSION = 2;
Q_LOGGING_CATEGORY(kdsaLocalSocket, "kdsingleapplication.localsocket", QtWarningMsg);
KDSingleApplicationLocalSocket::KDSingleApplicationLocalSocket(const QString &name, QObject *parent)
: QObject(parent)
{
#if defined(Q_OS_UNIX)
m_socketName = QStringLiteral("kdsingleapp-%1-%2-%3")
.arg(::getuid())
.arg(qEnvironmentVariable("XDG_SESSION_ID"), name);
#elif defined(Q_OS_WIN)
// I'm not sure of a "global session identifier" on Windows; are
// multiple logins from the same user a possibility? For now, following this:
// https://docs.microsoft.com/en-us/windows/desktop/devnotes/getting-the-session-id-of-the-current-process
DWORD sessionId;
BOOL haveSessionId = ProcessIdToSessionId(GetCurrentProcessId(), &sessionId);
m_socketName = QString::fromUtf8("kdsingleapp-%1-%2")
.arg(haveSessionId ? sessionId : 0)
.arg(name);
#else
#error "KDSingleApplication has not been ported to this platform"
#endif
const QString lockFilePath =
QDir::tempPath() + QLatin1Char('/') + m_socketName + QLatin1String(".lock");
qCDebug(kdsaLocalSocket) << "Socket name is" << m_socketName;
qCDebug(kdsaLocalSocket) << "Lock file path is" << lockFilePath;
std::unique_ptr<QLockFile> lockFile(new QLockFile(lockFilePath));
lockFile->setStaleLockTime(0);
if (!lockFile->tryLock()) {
// someone else has the lock => we're secondary
return;
}
std::unique_ptr<QLocalServer> server = std::make_unique<QLocalServer>();
if (!server->listen(m_socketName)) {
// maybe the primary crashed, leaving a stale socket; delete it and try again
QLocalServer::removeServer(m_socketName);
if (!server->listen(m_socketName)) {
// TODO: better error handling.
qWarning("KDSingleApplication: unable to make the primary instance listen on %ls: %ls",
qUtf16Printable(m_socketName),
qUtf16Printable(server->errorString()));
return;
}
}
connect(server.get(), &QLocalServer::newConnection,
this, &KDSingleApplicationLocalSocket::handleNewConnection);
m_lockFile = std::move(lockFile);
m_localServer = std::move(server);
}
KDSingleApplicationLocalSocket::~KDSingleApplicationLocalSocket() = default;
bool KDSingleApplicationLocalSocket::isPrimaryInstance() const
{
return m_localServer != nullptr;
}
bool KDSingleApplicationLocalSocket::sendMessage(const QByteArray &message, int timeout)
{
Q_ASSERT(!isPrimaryInstance());
QLocalSocket socket;
qCDebug(kdsaLocalSocket) << "Preparing to send message" << message << "with timeout" << timeout;
QDeadlineTimer deadline(timeout);
// There is an inherent race here with the setup of the server side.
// Even if the socket lock is held by the server, the server may not
// be listening yet. So this connection may fail; keep retrying
// until we hit the timeout.
do {
socket.connectToServer(m_socketName);
if (socket.waitForConnected(deadline.remainingTime()))
break;
} while (!deadline.hasExpired());
qCDebug(kdsaLocalSocket) << "Socket state:" << socket.state() << "Timer remaining" << deadline.remainingTime() << "Expired?" << deadline.hasExpired();
if (deadline.hasExpired())
return false;
socket.write(&LOCALSOCKET_PROTOCOL_VERSION, 1);
{
QByteArray encodedMessage;
QDataStream ds(&encodedMessage, QIODevice::WriteOnly);
ds << message;
socket.write(encodedMessage);
}
qCDebug(kdsaLocalSocket) << "Wrote message in the socket" << "Timer remaining" << deadline.remainingTime() << "Expired?" << deadline.hasExpired();
// There is no acknowledgement mechanism here.
// Should there be one?
while (socket.bytesToWrite() > 0) {
if (!socket.waitForBytesWritten(deadline.remainingTime()))
return false;
}
qCDebug(kdsaLocalSocket) << "Bytes written, now disconnecting" << "Timer remaining" << deadline.remainingTime() << "Expired?" << deadline.hasExpired();
socket.disconnectFromServer();
if (socket.state() == QLocalSocket::UnconnectedState)
return true;
if (!socket.waitForDisconnected(deadline.remainingTime()))
return false;
qCDebug(kdsaLocalSocket) << "Disconnected -- success!";
return true;
}
void KDSingleApplicationLocalSocket::handleNewConnection()
{
Q_ASSERT(m_localServer);
QLocalSocket *socket = m_localServer->nextPendingConnection();
qCDebug(kdsaLocalSocket) << "Got new connection on" << m_socketName << "state" << socket->state();
Connection c(socket);
c.readDataConnection = QObjectConnectionHolder(
connect(c.socket.get(), &QLocalSocket::readyRead,
this, &KDSingleApplicationLocalSocket::readDataFromSecondary));
c.secondaryDisconnectedConnection = QObjectConnectionHolder(
connect(c.socket.get(), &QLocalSocket::disconnected,
this, &KDSingleApplicationLocalSocket::secondaryDisconnected));
c.abortConnection = QObjectConnectionHolder(
connect(c.timeoutTimer.get(), &QTimer::timeout,
this, &KDSingleApplicationLocalSocket::abortConnectionToSecondary));
m_clients.push_back(std::move(c));
// Note that by the time we get here, the socket could've already been closed,
// and no signals emitted (hello, Windows!). Read what's already in the socket.
if (readDataFromSecondarySocket(socket))
return;
if (socket->state() == QLocalSocket::UnconnectedState)
secondarySocketDisconnected(socket);
}
template <typename Container>
static auto findConnectionBySocket(Container &container, QLocalSocket *socket)
{
auto i = std::find_if(container.begin(),
container.end(),
[socket](const auto &c) { return c.socket.get() == socket; });
Q_ASSERT(i != container.end());
return i;
}
template <typename Container>
static auto findConnectionByTimer(Container &container, QTimer *timer)
{
auto i = std::find_if(container.begin(),
container.end(),
[timer](const auto &c) { return c.timeoutTimer.get() == timer; });
Q_ASSERT(i != container.end());
return i;
}
void KDSingleApplicationLocalSocket::readDataFromSecondary()
{
QLocalSocket *socket = static_cast<QLocalSocket *>(sender());
readDataFromSecondarySocket(socket);
}
bool KDSingleApplicationLocalSocket::readDataFromSecondarySocket(QLocalSocket *socket)
{
auto i = findConnectionBySocket(m_clients, socket);
Connection &c = *i;
c.readData.append(socket->readAll());
qCDebug(kdsaLocalSocket) << "Got more data from a secondary. Data read so far:" << c.readData;
const QByteArray &data = c.readData;
if (data.size() >= 1) {
if (data[0] != LOCALSOCKET_PROTOCOL_VERSION) {
qCDebug(kdsaLocalSocket) << "Got an invalid protocol version";
m_clients.erase(i);
return true;
}
}
QDataStream ds(data);
ds.skipRawData(1);
ds.startTransaction();
QByteArray message;
ds >> message;
if (ds.commitTransaction()) {
qCDebug(kdsaLocalSocket) << "Got a complete message:" << message;
Q_EMIT messageReceived(message);
m_clients.erase(i);
return true;
}
return false;
}
void KDSingleApplicationLocalSocket::secondaryDisconnected()
{
QLocalSocket *socket = static_cast<QLocalSocket *>(sender());
secondarySocketDisconnected(socket);
}
void KDSingleApplicationLocalSocket::secondarySocketDisconnected(QLocalSocket *socket)
{
auto i = findConnectionBySocket(m_clients, socket);
Connection c = std::move(*i);
m_clients.erase(i);
qCDebug(kdsaLocalSocket) << "Secondary disconnected. Data read:" << c.readData;
}
void KDSingleApplicationLocalSocket::abortConnectionToSecondary()
{
QTimer *timer = static_cast<QTimer *>(sender());
auto i = findConnectionByTimer(m_clients, timer);
Connection c = std::move(*i);
m_clients.erase(i);
qCDebug(kdsaLocalSocket) << "Secondary timed out. Data read:" << c.readData;
}
KDSingleApplicationLocalSocket::Connection::Connection(QLocalSocket *socket)
: socket(socket)
, timeoutTimer(new QTimer)
{
timeoutTimer->start(LOCALSOCKET_CONNECTION_TIMEOUT);
}

View File

@ -1,133 +0,0 @@
/*
MIT License
Copyright (C) 2019-2021 Klarälvdalens Datakonsult AB, a KDAB Group company, info@kdab.com
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#ifndef KDSINGLEAPPLICATION_LOCALSOCKET_P_H
#define KDSINGLEAPPLICATION_LOCALSOCKET_P_H
#include <QtCore/QObject>
#include <QtCore/QByteArray>
#include <QtCore/QString>
QT_BEGIN_NAMESPACE
class QLockFile;
class QLocalServer;
class QLocalSocket;
class QTimer;
QT_END_NAMESPACE
#include <memory>
#include <vector>
struct QObjectDeleteLater
{
void operator()(QObject *o) { o->deleteLater(); }
};
class QObjectConnectionHolder
{
Q_DISABLE_COPY(QObjectConnectionHolder)
QMetaObject::Connection c;
public:
QObjectConnectionHolder() {}
explicit QObjectConnectionHolder(QMetaObject::Connection c)
: c(std::move(c))
{
}
~QObjectConnectionHolder()
{
QObject::disconnect(c);
}
QObjectConnectionHolder(QObjectConnectionHolder &&other) noexcept
: c(std::exchange(other.c, {}))
{}
QObjectConnectionHolder &operator=(QObjectConnectionHolder &&other) noexcept
{
QObjectConnectionHolder moved(std::move(other));
swap(moved);
return *this;
}
void swap(QObjectConnectionHolder &other) noexcept
{
using std::swap;
swap(c, other.c);
}
};
class KDSingleApplicationLocalSocket : public QObject
{
Q_OBJECT
public:
explicit KDSingleApplicationLocalSocket(const QString &name,
QObject *parent = nullptr);
~KDSingleApplicationLocalSocket();
bool isPrimaryInstance() const;
public Q_SLOTS:
bool sendMessage(const QByteArray &message, int timeout);
Q_SIGNALS:
void messageReceived(const QByteArray &message);
private:
void handleNewConnection();
void readDataFromSecondary();
bool readDataFromSecondarySocket(QLocalSocket *socket);
void secondaryDisconnected();
void secondarySocketDisconnected(QLocalSocket *socket);
void abortConnectionToSecondary();
QString m_socketName;
std::unique_ptr<QLockFile> m_lockFile; // protects m_localServer
std::unique_ptr<QLocalServer> m_localServer;
struct Connection {
explicit Connection(QLocalSocket *s);
std::unique_ptr<QLocalSocket, QObjectDeleteLater> socket;
std::unique_ptr<QTimer, QObjectDeleteLater> timeoutTimer;
QByteArray readData;
// socket/timeoutTimer are deleted via deleteLater (as we delete them
// in slots connected to their signals). Before the deleteLater is acted upon,
// they may emit further signals, triggering logic that it's not supposed
// to be triggered (as the Connection has already been destroyed).
// Use this Holder to break the connections.
QObjectConnectionHolder readDataConnection;
QObjectConnectionHolder secondaryDisconnectedConnection;
QObjectConnectionHolder abortConnection;
};
std::vector<Connection> m_clients;
};
#endif // KDSINGLEAPPLICATION_LOCALSOCKET_P_H

View File

@ -1,20 +0,0 @@
include(../common.pri)
TEMPLATE = lib
TARGET = kdsingleapplication
QT = core network
CONFIG += static
SOURCES += \
kdsingleapplication.cpp \
kdsingleapplication_localsocket.cpp \
HEADERS += \
kdsingleapplication.h \
kdsingleapplication_lib.h \
kdsingleapplication_localsocket_p.h \
DEFINES += \
KDSINGLEAPPLICATION_BUILD
win32:LIBS += -lkernel32

View File

@ -0,0 +1,488 @@
The KD Tools Library is Copyright (C) 2001-2010 Klaralvdalens Datakonsult AB.
You may use, distribute and copy the KD Tools Library under the terms of
GNU Library General Public License version 2, which is displayed below.
-------------------------------------------------------------------------
GNU LIBRARY GENERAL PUBLIC LICENSE
Version 2, June 1991
Copyright (C) 1991 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
[This is the first released version of the library GPL. It is
numbered 2 because it goes with version 2 of the ordinary GPL.]
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.
This license, the Library General Public License, applies to some
specially designated Free Software Foundation software, and to any
other libraries whose authors decide to use it. You can use it for
your libraries, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if
you distribute copies of the library, or if you modify it.
For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link a program with the library, you must provide
complete object files to the recipients so that they can relink them
with the library, after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.
Our method of protecting your rights has two steps: (1) copyright
the library, and (2) offer you this license which gives you legal
permission to copy, distribute and/or modify the library.
Also, for each distributor's protection, we want to make certain
that everyone understands that there is no warranty for this free
library. If the library is modified by someone else and passed on, we
want its recipients to know that what they have is not the original
version, so that any problems introduced by others will not reflect on
the original authors' reputations.
Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that companies distributing free
software will individually obtain patent licenses, thus in effect
transforming the program into proprietary software. To prevent this,
we have made it clear that any patent must be licensed for everyone's
free use or not licensed at all.
Most GNU software, including some libraries, is covered by the ordinary
GNU General Public License, which was designed for utility programs. This
license, the GNU Library General Public License, applies to certain
designated libraries. This license is quite different from the ordinary
one; be sure to read it in full, and don't assume that anything in it is
the same as in the ordinary license.
The reason we have a separate public license for some libraries is that
they blur the distinction we usually make between modifying or adding to a
program and simply using it. Linking a program with a library, without
changing the library, is in some sense simply using the library, and is
analogous to running a utility program or application program. However, in
a textual and legal sense, the linked executable is a combined work, a
derivative of the original library, and the ordinary General Public License
treats it as such.
Because of this blurred distinction, using the ordinary General
Public License for libraries did not effectively promote software
sharing, because most developers did not use the libraries. We
concluded that weaker conditions might promote sharing better.
However, unrestricted linking of non-free programs would deprive the
users of those programs of all benefit from the free status of the
libraries themselves. This Library General Public License is intended to
permit developers of non-free programs to use free libraries, while
preserving your freedom as a user of such programs to change the free
libraries that are incorporated in them. (We have not seen how to achieve
this as regards changes in header files, but we have achieved it as regards
changes in the actual functions of the Library.) The hope is that this
will lead to faster development of free libraries.
The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, while the latter only
works together with the library.
Note that it is possible for a library to be covered by the ordinary
General Public License rather than by this special one.
GNU LIBRARY GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License Agreement applies to any software library which
contains a notice placed by the copyright holder or other authorized
party saying it may be distributed under the terms of this Library
General Public License (also called "this License"). Each licensee is
addressed as "you".
A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.
The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)
"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.
1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.
You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.
2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.
(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.
In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.
Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.
This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.
4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.
If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.
5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.
However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.
When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.
6. As an exception to the Sections above, you may also compile or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:
a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)
b) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.
c) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.
d) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.
For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.
It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.
7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:
a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.
b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.
8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.
9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.
10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.
11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.
If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.
13. The Free Software Foundation may publish revised and/or new
versions of the Library General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.
14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.
NO WARRANTY
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Libraries
If you develop a new library, and you want it to be of the greatest
possible use to the public, we recommend making it free software that
everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms of the
ordinary General Public License).
To apply these terms, attach the following notices to the library. It is
safest to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.
<one line to give the library's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Also add information on how to contact you by electronic and paper mail.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the library, if
necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the
library `Frob' (a library for tweaking knobs) written by James Random Hacker.
<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice
That's all there is to it!

View File

@ -0,0 +1,481 @@
/*
* SPDX-License-Identifier: LGPL-2.0-only
* License-Filename: LICENSES/LGPLv2-KDAB
*
* The KD Tools Library is Copyright (C) 2001-2010 Klaralvdalens Datakonsult AB.
*/
#include "kdlockedsharedmemorypointer.h"
#if QT_VERSION >= 0x040400 || defined( DOXYGEN_RUN )
#ifndef QT_NO_SHAREDMEMORY
namespace kdtools
{
}
using namespace kdtools;
KDLockedSharedMemoryPointerBase::KDLockedSharedMemoryPointerBase( QSharedMemory * m )
: locker( m ),
mem( m )
{
}
KDLockedSharedMemoryPointerBase::KDLockedSharedMemoryPointerBase( QSharedMemory & m )
: locker( &m ),
mem( &m )
{
}
KDLockedSharedMemoryPointerBase::~KDLockedSharedMemoryPointerBase() {}
void * KDLockedSharedMemoryPointerBase::get() {
return mem ? mem->data() : 0 ;
}
const void * KDLockedSharedMemoryPointerBase::get() const {
return mem ? mem->data() : 0 ;
}
size_t KDLockedSharedMemoryPointerBase::byteSize() const {
return mem ? mem->size() : 0;
}
/*!
\class KDLockedSharedMemoryPointer
\ingroup core raii smartptr
\brief Locking pointer for Qt shared memory segments
\since_c 2.1
(The exception safety of this class has not been evaluated yet.)
KDLockedSharedMemoryPointer is a smart immutable pointer, which gives convenient and safe access to a QSharedMemory data segment.
The content of a KDLockedSharedMemoryPointer cannot be changed during it's lifetime.
You can use this class like a normal pointer to the shared memory segment and be sure it's locked while accessing it.
\note You can only put simple types/structs/classes into it. structs and classes shall not contain any other pointers. See the
documentation of QSharedMemory for details.
*/
/*!
\fn KDLockedSharedMemoryPointer::KDLockedSharedMemoryPointer( QSharedMemory * mem )
Constructor. Constructs a KDLockedSharedMemory pointer which points to the data segment of \a mem.
The constructor locks \a mem. If the memory segment is already locked by another process, this constructor
blocks until the lock is released.
\post data() == mem->data() and the memory segment has been locked
*/
/*!
\fn KDLockedSharedMemoryPointer::KDLockedSharedMemoryPointer( QSharedMemory & mem )
\overload
\post data() == mem.data() and the memory segment has been locked
*/
/*!
\fn KDLockedSharedMemoryPointer::~KDLockedSharedMemoryPointer()
Destructor. Unlocks the shared memory segment.
\post The shared memory segment has been unlocked
*/
/*!
\fn T * KDLockedSharedMemoryPointer::get()
\returns a pointer to the contained object.
*/
/*!
\fn const T * KDLockedSharedMemoryPointer::get() const
\returns a const pointer to the contained object
\overload
*/
/*!
\fn T * KDLockedSharedMemoryPointer::data()
Equivalent to get(), provided for consistency with Qt naming conventions.
*/
/*!
\fn const T * KDLockedSharedMemoryPointer::data() const
\overload
*/
/*!
\fn T & KDLockedSharedMemoryPointer::operator*()
Dereference operator. Returns \link get() *get()\endlink.
*/
/*!
\fn const T & KDLockedSharedMemoryPointer::operator*() const
Dereference operator. Returns \link get() *get()\endlink.
\overload
*/
/*!
\fn T * KDLockedSharedMemoryPointer::operator->()
Member-by-pointer operator. Returns get().
*/
/*!
\fn const T * KDLockedSharedMemoryPointer::operator->() const
Member-by-pointer operator. Returns get().
\overload
*/
/*!
\class KDLockedSharedMemoryArray
\ingroup core raii smartptr
\brief Locking array pointer to Qt shared memory segments
\since_c 2.1
(The exception safety of this class has not been evaluated yet.)
KDLockedSharedMemoryArray is a smart immutable pointer, which gives convenient and safe access to array data stored in a QSharedMemory
data segment.
The content of a KDLockedSharedMemoryArray cannot be changed during it's lifetime.
You can use this class like a normal pointer to the shared memory segment and be sure it's locked while accessing it.
\note You can only put arrays of simple types/structs/classes into it. structs and classes shall not contain any other pointers. See the
documentation of QSharedMemory for details.
\sa KDLockedSharedMemoryPointer
*/
/*!
\fn KDLockedSharedMemoryArray::KDLockedSharedMemoryArray( QSharedMemory* mem )
Constructor. Constructs a KDLockedSharedMemoryArray which points to the data segment of \a mem. The constructor locks \a mem. If the memory
segment is already locked by another process, this constructor blocks until the lock is release.
\post get() == mem->data() and the memory segment has been locked
*/
/*!
\fn KDLockedSharedMemoryArray::KDLockedSharedMemoryArray( QSharedMemory& mem )
\overload
\post get() == mem->data() and the memory segment has been locked
*/
/*!
\typedef KDLockedSharedMemoryArray::size_type
Typedef for std::size_t. Provided for STL compatibility.
*/
/*!
\typedef KDLockedSharedMemoryArray::difference_type
Typedef for std::ptrdiff_t. Provided for STL compatibility.
*/
/*!
\typedef KDLockedSharedMemoryArray::iterator
Typedef for T*. Provided for STL compatibility.
\since_t 2.2
*/
/*!
\typedef KDLockedSharedMemoryArray::const_iterator
Typedef for const T*. Provided for STL compatibility.
\since_t 2.2
*/
/*!
\typedef KDLockedSharedMemoryArray::reverse_iterator
Typedef for std::reverse_iterator< \link KDLockedSharedMemoryArray::iterator iterator\endlink >. Provided for STL compatibility.
\since_t 2.2
*/
/*!
\typedef KDLockedSharedMemoryArray::const_reverse_iterator
Typedef for std::reverse_iterator< \link KDLockedSharedMemoryArray::const_iterator const_iterator\endlink >. Provided for STL compatibility.
\since_t 2.2
*/
/*!
\fn KDLockedSharedMemoryArray::iterator KDLockedSharedMemoryArray::begin()
Returns an \link KDLockedSharedMemoryArray::iterator iterator\endlink pointing to the first item of the array.
\since_f 2.2
*/
/*!
\fn KDLockedSharedMemoryArray::const_iterator KDLockedSharedMemoryArray::begin() const
\overload
\since_f 2.2
*/
/*!
\fn KDLockedSharedMemoryArray::iterator KDLockedSharedMemoryArray::end()
Returns an \link KDLockedSharedMemoryArray::iterator iterator\endlink pointing to the item after the last item of the array.
\since_f 2.2
*/
/*!
\fn KDLockedSharedMemoryArray::const_iterator KDLockedSharedMemoryArray::end() const
\overload
\since_f 2.2
*/
/*!
\fn KDLockedSharedMemoryArray::reverse_iterator KDLockedSharedMemoryArray::rbegin()
Returns an \link KDLockedSharedMemoryArray::reverse_iterator reverse_iterator\endlink pointing to the item after the last item of the array.
\since_f 2.2
*/
/*!
\fn KDLockedSharedMemoryArray::const_reverse_iterator KDLockedSharedMemoryArray::rbegin() const
\overload
\since_f 2.2
*/
/*!
\fn KDLockedSharedMemoryArray::reverse_iterator KDLockedSharedMemoryArray::rend()
Returns an \link KDLockedSharedMemoryArray::reverse_iterator reverse_iterator\endlink pointing to the first item of the array.
\since_f 2.2
*/
/*!
\fn KDLockedSharedMemoryArray::const_reverse_iterator KDLockedSharedMemoryArray::rend() const
\overload
\since_f 2.2
*/
/*!
\fn KDLockedSharedMemoryArray::size_type KDLockedSharedMemoryArray::size() const
Returns the size of this array. The size is calculated from the storage size of T and
the size of the shared memory segment.
\since_f 2.2
*/
/*!
\fn T& KDLockedSharedMemoryArray::operator[]( difference_type n )
Array access operator. Returns a reference to the item at index position \a n.
*/
/*!
\fn const T& KDLockedSharedMemoryArray::operator[]( difference_type n ) const
\overload
*/
/*!
\fn T& KDLockedSharedMemoryArray::front()
Returns a reference to the first item in the array. This is the same as operator[](0).
*/
/*!
\fn const T& KDLockedSharedMemoryArray::front() const
\overload
*/
/*!
\fn T& KDLockedSharedMemoryArray::back()
Returns a reference to the last item in the array. This is the same as operator[](size()-1).
\since_f 2.2
*/
/*!
\fn const T& KDLockedSharedMemoryArray::back() const
\overload
\since_f 2.2
*/
#ifdef eKDTOOLSCORE_UNITTESTS
#include <KDUnitTest/Test>
#include <QThread>
#include <QUuid>
namespace
{
struct TestStruct
{
TestStruct( uint nn = 0 )
: n( nn ),
f( 0.0 ),
c( '\0' ),
b( false )
{
}
uint n;
double f;
char c;
bool b;
};
bool operator==( const TestStruct& lhs, const TestStruct& rhs )
{
return lhs.n == rhs.n && lhs.f == rhs.f && lhs.c == rhs.c && lhs.b == rhs.b;
}
class TestThread : public QThread
{
public:
TestThread( const QString& key )
: mem( key )
{
mem.attach();
}
void run()
{
while( true )
{
msleep( 100 );
kdtools::KDLockedSharedMemoryPointer< TestStruct > p( &mem );
if( !p->b )
continue;
p->n = 5;
p->f = 3.14;
p->c = 'A';
p->b = false;
return;
}
}
QSharedMemory mem;
};
bool isConst( TestStruct* )
{
return false;
}
bool isConst( const TestStruct* )
{
return true;
}
}
KDAB_UNITTEST_SIMPLE( KDLockedSharedMemoryPointer, "kdcoretools" ) {
const QString key = QUuid::createUuid();
QSharedMemory mem( key );
const bool created = mem.create( sizeof( TestStruct ) );
assertTrue( created );
if ( !created )
return; // don't execute tests if shm coulnd't be created
// On Windows, shared mem is only available in increments of page
// size (4k), so don't fail if the segment is larger:
const unsigned long mem_size = mem.size();
assertGreaterOrEqual( mem_size, sizeof( TestStruct ) );
{
kdtools::KDLockedSharedMemoryPointer< TestStruct > p( &mem );
assertTrue( p );
*p = TestStruct();
assertEqual( p->n, 0u );
assertEqual( p->f, 0.0 );
assertEqual( p->c, '\0' );
assertFalse( p->b );
}
{
TestThread thread( key );
assertEqual( thread.mem.key().toStdString(), key.toStdString() );
assertEqual( static_cast< unsigned long >( thread.mem.size() ), mem_size );
thread.start();
assertTrue( thread.isRunning() );
thread.wait( 2000 );
assertTrue( thread.isRunning() );
{
kdtools::KDLockedSharedMemoryPointer< TestStruct > p( &mem );
p->b = true;
}
thread.wait( 2000 );
assertFalse( thread.isRunning() );
}
{
kdtools::KDLockedSharedMemoryPointer< TestStruct > p( &mem );
assertEqual( p->n, 5u );
assertEqual( p->f, 3.14 );
assertEqual( p->c, 'A' );
assertFalse( p->b );
}
{
kdtools::KDLockedSharedMemoryPointer< TestStruct > p( mem );
assertEqual( mem.data(), p.get() );
assertEqual( p.get(), p.operator->() );
assertEqual( p.get(), &(*p) );
assertEqual( p.get(), p.data() );
assertFalse( isConst( p.get() ) );
}
{
const kdtools::KDLockedSharedMemoryPointer< TestStruct > p( &mem );
assertEqual( mem.data(), p.get() );
assertEqual( p.get(), p.operator->() );
assertEqual( p.get(), &(*p) );
assertEqual( p.get(), p.data() );
assertTrue( isConst( p.get() ) );
}
{
QSharedMemory mem2( key + key );
const bool created2 = mem2.create( 16 * sizeof( TestStruct ) );
assertTrue( created2 );
if ( !created2 )
return; // don't execute tests if shm coulnd't be created
kdtools::KDLockedSharedMemoryArray<TestStruct> a( mem2 );
assertTrue( a );
assertEqual( a.get(), mem2.data() );
assertEqual( &a[0], a.get() );
a[1] = a[0];
assertTrue( a[0] == a[1] );
TestStruct ts;
ts.n = 5;
ts.f = 3.14;
a[0] = ts;
assertFalse( a[0] == a[1] );
assertEqual( a.front().n, ts.n );
assertEqual( a[0].f, ts.f );
a[0].n = 10;
assertEqual( a.front().n, 10u );
ts = a[0];
assertEqual( ts.n, 10u );
std::vector< TestStruct > v;
for( uint i = 0; i < a.size(); ++i )
v.push_back( TestStruct( i ) );
std::copy( v.begin(), v.end(), a.begin() );
for( uint i = 0; i < a.size(); ++i )
assertEqual( a[ i ].n, i );
assertEqual( a.front().n, 0u );
assertEqual( a.back().n, a.size() - 1 );
std::copy( v.begin(), v.end(), a.rbegin() );
for( uint i = 0; i < a.size(); ++i )
assertEqual( a[ i ].n, a.size() - 1 - i );
assertEqual( a.front().n, a.size() - 1 );
assertEqual( a.back().n, 0u );
}
}
#endif // KDTOOLSCORE_UNITTESTS
#endif // QT_NO_SHAREDMEMORY
#endif // QT_VERSION >= 0x040400 || defined( DOXYGEN_RUN )

View File

@ -0,0 +1,121 @@
/*
* SPDX-License-Identifier: LGPL-2.0-only
* License-Filename: LICENSES/LGPLv2-KDAB
*
* The KD Tools Library is Copyright (C) 2001-2010 Klaralvdalens Datakonsult AB.
*/
#ifndef __KDTOOLS__CORE__KDLOCKEDSHAREDMEMORYPOINTER_H__
#define __KDTOOLS__CORE__KDLOCKEDSHAREDMEMORYPOINTER_H__
#include <QtCore/QtGlobal>
#if QT_VERSION >= 0x040400 || defined( DOXYGEN_RUN )
#ifndef QT_NO_SHAREDMEMORY
#include "kdsharedmemorylocker.h"
#include <QtCore/QSharedMemory>
#include <cassert>
#ifndef DOXYGEN_RUN
namespace kdtools {
#endif
class KDLockedSharedMemoryPointerBase {
protected:
explicit KDLockedSharedMemoryPointerBase( QSharedMemory * mem );
explicit KDLockedSharedMemoryPointerBase( QSharedMemory & mem );
~KDLockedSharedMemoryPointerBase();
// PENDING(marc) do we really want const propagation here? I
// usually declare all my RAII objects const...
void * get();
const void * get() const;
KDAB_IMPLEMENT_SAFE_BOOL_OPERATOR( get() )
size_t byteSize() const;
private:
KDSharedMemoryLocker locker;
QSharedMemory * const mem;
};
template< typename T>
class MAKEINCLUDES_EXPORT KDLockedSharedMemoryPointer : KDLockedSharedMemoryPointerBase {
KDAB_DISABLE_COPY( KDLockedSharedMemoryPointer );
public:
explicit KDLockedSharedMemoryPointer( QSharedMemory * m )
: KDLockedSharedMemoryPointerBase( m ) {}
explicit KDLockedSharedMemoryPointer( QSharedMemory & m )
: KDLockedSharedMemoryPointerBase( m ) {}
T * get() { return static_cast<T*>( KDLockedSharedMemoryPointerBase::get() ); }
const T * get() const { return static_cast<const T*>( KDLockedSharedMemoryPointerBase::get() ); }
T * data() { return static_cast<T*>( get() ); }
const T * data() const { return static_cast<const T*>( get() ); }
T & operator*() { assert( get() ); return *get(); }
const T & operator*() const { assert( get() ); return *get(); }
T * operator->() { return get(); }
const T * operator->() const { return get(); }
KDAB_USING_SAFE_BOOL_OPERATOR( KDLockedSharedMemoryPointerBase )
};
template <typename T>
class MAKEINCLUDES_EXPORT KDLockedSharedMemoryArray : KDLockedSharedMemoryPointerBase {
KDAB_DISABLE_COPY( KDLockedSharedMemoryArray );
public:
explicit KDLockedSharedMemoryArray( QSharedMemory * m )
: KDLockedSharedMemoryPointerBase( m ) {}
explicit KDLockedSharedMemoryArray( QSharedMemory & m )
: KDLockedSharedMemoryPointerBase( m ) {}
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef T* iterator;
typedef const T* const_iterator;
typedef std::reverse_iterator< const_iterator > const_reverse_iterator;
typedef std::reverse_iterator< iterator > reverse_iterator;
iterator begin() { return get(); }
const_iterator begin() const { return get(); }
iterator end() { return begin() + size(); }
const_iterator end() const { return begin() + size(); }
reverse_iterator rbegin() { return reverse_iterator( end() ); }
const_reverse_iterator rbegin() const { return reverse_iterator( end() ); }
reverse_iterator rend() { return reverse_iterator( begin() ); }
const_reverse_iterator rend() const { return const_reverse_iterator( begin() ); }
size_type size() const { return byteSize() / sizeof( T ); }
T * get() { return static_cast<T*>( KDLockedSharedMemoryPointerBase::get() ); }
const T * get() const { return static_cast<const T*>( KDLockedSharedMemoryPointerBase::get() ); }
T & operator[]( difference_type n ) { assert( get() ); return *(get()+n); }
const T & operator[]( difference_type n ) const { assert( get() ); return *(get()+n); }
T & front() { assert( get() ); return *get(); }
const T & front() const { assert( get() ); return *get(); }
T & back() { assert( get() ); return *( get() + size() - 1 ); }
const T & back() const { assert( get() ); return *( get() + size() - 1 ); }
KDAB_USING_SAFE_BOOL_OPERATOR( KDLockedSharedMemoryPointerBase )
};
#ifndef DOXYGEN_RUN
}
#endif
#endif /* QT_NO_SHAREDMEMORY */
#endif /* QT_VERSION >= 0x040400 || defined( DOXYGEN_RUN ) */
#endif /* __KDTOOLS__CORE__KDLOCKEDSHAREDMEMORYPOINTER_H__ */

View File

@ -0,0 +1,46 @@
/*
* SPDX-License-Identifier: LGPL-2.0-only
* License-Filename: LICENSES/LGPLv2-KDAB
*
* The KD Tools Library is Copyright (C) 2001-2010 Klaralvdalens Datakonsult AB.
*/
#include "kdsharedmemorylocker.h"
#if QT_VERSION >= 0x040400 || defined( DOXYGEN_RUN )
#include <QSharedMemory>
using namespace kdtools;
/*!
\class KDSharedMemoryLocker
\ingroup raii core
\brief Exception-safe and convenient wrapper around QSharedMemory::lock()
*/
/**
* Constructor. Locks the shared memory segment \a mem.
* If another process has locking the segment, this constructor blocks
* until the lock is released. The memory segments needs to be properly created or attached.
*/
KDSharedMemoryLocker::KDSharedMemoryLocker( QSharedMemory* mem )
: mem( mem )
{
mem->lock();
}
/**
* Destructor. Unlocks the shared memory segment associated with this
* KDSharedMemoryLocker.
*/
KDSharedMemoryLocker::~KDSharedMemoryLocker()
{
mem->unlock();
}
#ifdef KDAB_EVAL
#include KDAB_EVAL
static const EvalDialogChecker evalChecker( "KD Tools", false );
#endif
#endif

View File

@ -0,0 +1,42 @@
/*
* SPDX-License-Identifier: LGPL-2.0-only
* License-Filename: LICENSES/LGPLv2-KDAB
*
* The KD Tools Library is Copyright (C) 2001-2010 Klaralvdalens Datakonsult AB.
*/
#ifndef __KDTOOLS__CORE__KDSHAREDMEMORYLOCKER_H
#define __KDTOOLS__CORE__KDSHAREDMEMORYLOCKER_H
#include "kdtoolsglobal.h"
#if QT_VERSION < 0x040400 && !defined( DOXYGEN_RUN )
#ifdef Q_CC_GNU
#warning "Can't use KDTools KDSharedMemoryLocker with Qt versions prior to 4.4"
#endif
#else
class QSharedMemory;
#ifndef DOXYGEN_RUN
namespace kdtools
{
#endif
class KDTOOLSCORE_EXPORT KDSharedMemoryLocker
{
Q_DISABLE_COPY( KDSharedMemoryLocker )
public:
KDSharedMemoryLocker( QSharedMemory* mem );
~KDSharedMemoryLocker();
private:
QSharedMemory* const mem;
};
#ifndef DOXYGEN_RUN
}
#endif
#endif
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,147 @@
/*
* SPDX-License-Identifier: LGPL-2.0-only
* License-Filename: LICENSES/LGPLv2-KDAB
*
* The KD Tools Library is Copyright (C) 2001-2010 Klaralvdalens Datakonsult AB.
*/
#ifndef KDTOOLSCORE_KDSINGLEAPPLICATIONGUARD_H
#define KDTOOLSCORE_KDSINGLEAPPLICATIONGUARD_H
#include <QtCore/QObject>
#ifndef QT_NO_SHAREDMEMORY
#include <QtCore/QStringList>
#include <QtCore/QMetaType>
#include "pimpl_ptr.h"
#include "DllMacro.h"
#include <algorithm>
template <typename T> class QVector;
class QCoreApplication;
class DLLEXPORT KDSingleApplicationGuard : public QObject
{
Q_OBJECT
Q_ENUMS( Policy )
Q_PROPERTY( bool operational READ isOperational )
Q_PROPERTY( bool exitRequested READ isExitRequested )
Q_PROPERTY( bool primaryInstance READ isPrimaryInstance NOTIFY becamePrimaryInstance )
Q_PROPERTY( Policy policy READ policy WRITE setPolicy NOTIFY policyChanged )
public:
enum Policy
{
NoPolicy = 0,
AutoKillOtherInstances = 1
};
explicit KDSingleApplicationGuard( QObject * parent=nullptr );
explicit KDSingleApplicationGuard( Policy policy, QObject * parent=nullptr );
explicit KDSingleApplicationGuard( const QStringList & arguments, QObject * parent=nullptr );
explicit KDSingleApplicationGuard( const QStringList & arguments, Policy policy, QObject * parent=nullptr );
~KDSingleApplicationGuard();
bool isOperational() const;
bool isExitRequested() const;
bool isPrimaryInstance() const;
Policy policy() const;
void setPolicy( Policy policy );
class Instance;
QVector<Instance> instances() const;
Q_SIGNALS:
void instanceStarted( const KDSingleApplicationGuard::Instance & instance );
void instanceExited( const KDSingleApplicationGuard::Instance & instance );
void exitRequested();
void raiseRequested();
void becamePrimaryInstance();
void becameSecondaryInstance();
void policyChanged( KDSingleApplicationGuard::Policy policy );
public Q_SLOTS:
void shutdownOtherInstances();
void killOtherInstances();
protected:
/*! \reimp */ bool event( QEvent * event );
private:
#ifndef Q_WS_WIN
static void SIGINT_handler( int );
#endif
private:
friend struct ProcessInfo;
class Private;
kdtools::pimpl_ptr< Private > d;
};
class DLLEXPORT KDSingleApplicationGuard::Instance {
friend class ::KDSingleApplicationGuard;
friend class ::KDSingleApplicationGuard::Private;
Instance( const QStringList &, bool, qint64 );
public:
Instance();
Instance( const Instance & other );
~Instance();
void swap( Instance & other ) {
std::swap( d, other.d );
}
Instance & operator=( Instance other ) {
swap( other );
return *this;
}
bool isNull() const { return !d; }
bool isValid() const;
bool areArgumentsTruncated() const;
const QStringList & arguments() const;
qint64 pid() const;
void shutdown();
void kill();
void raise();
private:
class Private;
Private * d;
};
namespace std {
template <>
inline void swap( KDSingleApplicationGuard::Instance & lhs,
KDSingleApplicationGuard::Instance & rhs )
{
lhs.swap( rhs );
}
} // namespace std
QT_BEGIN_NAMESPACE
template <>
inline void qSwap( KDSingleApplicationGuard::Instance & lhs,
KDSingleApplicationGuard::Instance & rhs )
{
lhs.swap( rhs );
}
Q_DECLARE_METATYPE( KDSingleApplicationGuard::Instance )
Q_DECLARE_TYPEINFO( KDSingleApplicationGuard::Instance, Q_MOVABLE_TYPE );
QT_END_NAMESPACE
#endif // QT_NO_SHAREDMEMORY
#endif /* KDTOOLSCORE_KDSINGLEAPPLICATIONGUARD_H */

View File

@ -0,0 +1,42 @@
/*
* SPDX-License-Identifier: LGPL-2.0-only
* License-Filename: LICENSES/LGPLv2-KDAB
*
* The KD Tools Library is Copyright (C) 2001-2010 Klaralvdalens Datakonsult AB.
*/
#include "kdtoolsglobal.h"
#include <QByteArray>
#include <algorithm>
namespace {
struct Version {
unsigned char v[3];
};
static inline bool operator<( const Version & lhs, const Version & rhs ) {
return std::lexicographical_compare( lhs.v, lhs.v + 3, rhs.v, rhs.v + 3 );
}
static inline bool operator==( const Version & lhs, const Version & rhs ) {
return std::equal( lhs.v, lhs.v + 3, rhs.v );
}
KDTOOLS_MAKE_RELATION_OPERATORS( Version, static inline )
}
static Version kdParseQtVersion( const char * const version ) {
if ( !version || qstrlen( version ) < 5 || version[1] != '.' || version[3] != '.' || ( version[5] != 0 && version[5] != '.' && version[5] != '-' ) )
return Version(); // parse error
const Version result = { { static_cast< unsigned char >( version[0] - '0' ),
static_cast< unsigned char >( version[2] - '0' ),
static_cast< unsigned char >( version[4] - '0' ) } };
return result;
}
bool _kdCheckQtVersion_impl( unsigned int major, unsigned int minor, unsigned int patchlevel ) {
static const Version actual = kdParseQtVersion( qVersion() ); // do this only once each run...
const Version requested = { { static_cast< unsigned char >( major ),
static_cast< unsigned char >( minor ),
static_cast< unsigned char >( patchlevel ) } };
return actual >= requested;
}

View File

@ -0,0 +1,120 @@
/*
* SPDX-License-Identifier: LGPL-2.0-only
* License-Filename: LICENSES/LGPLv2-KDAB
*
* The KD Tools Library is Copyright (C) 2001-2010 Klaralvdalens Datakonsult AB.
*/
#ifndef KDTOOLS_KDTOOLSGLOBAL_H
#define KDTOOLS_KDTOOLSGLOBAL_H
#include <QtCore/QtGlobal>
#define KDAB_DISABLE_COPY( x ) private: x( const x & ); x & operator=( const x & )
#ifdef KDTOOLS_SHARED
# ifdef BUILD_SHARED_KDTOOLSCORE
# define KDTOOLSCORE_EXPORT Q_DECL_EXPORT
# else
# define KDTOOLSCORE_EXPORT Q_DECL_IMPORT
# endif
# ifdef BUILD_SHARED_KDTOOLSGUI
# define KDTOOLSGUI_EXPORT Q_DECL_EXPORT
# else
# define KDTOOLSGUI_EXPORT Q_DECL_IMPORT
# endif
# ifdef BUILD_SHARED_KDTOOLSXML
# define KDTOOLSXML_EXPORT Q_DECL_EXPORT
# else
# define KDTOOLSXML_EXPORT Q_DECL_IMPORT
# endif
# ifdef BUILD_SHARED_KDUPDATER
# define KDTOOLS_UPDATER_EXPORT Q_DECL_EXPORT
# else
# define KDTOOLS_UPDATER_EXPORT Q_DECL_IMPORT
# endif
#else // KDTOOLS_SHARED
# define KDTOOLSCORE_EXPORT
# define KDTOOLSGUI_EXPORT
# define KDTOOLSXML_EXPORT
# define KDTOOLS_UPDATER_EXPORT
#endif // KDTOOLS_SHARED
#define MAKEINCLUDES_EXPORT
#define DOXYGEN_PROPERTY( x )
#ifdef DOXYGEN_RUN
# define KDAB_IMPLEMENT_SAFE_BOOL_OPERATOR( func ) operator unspecified_bool_type() const { return func; }
# define KDAB_USING_SAFE_BOOL_OPERATOR( Class ) operator unspecified_bool_type() const;
#else
# define KDAB_IMPLEMENT_SAFE_BOOL_OPERATOR( func ) \
private: \
struct __safe_bool_dummy__ { void nonnull() {} }; \
public: \
typedef void ( __safe_bool_dummy__::*unspecified_bool_type )(); \
operator unspecified_bool_type() const { \
return ( func ) ? &__safe_bool_dummy__::nonnull : 0 ; \
}
#define KDAB_USING_SAFE_BOOL_OPERATOR( Class ) \
using Class::operator Class::unspecified_bool_type;
#endif
#define KDTOOLS_MAKE_RELATION_OPERATORS( Class, linkage ) \
linkage bool operator>( const Class & lhs, const Class & rhs ) { \
return operator<( rhs, lhs ); \
} \
linkage bool operator!=( const Class & lhs, const Class & rhs ) { \
return !operator==( lhs, rhs ); \
} \
linkage bool operator<=( const Class & lhs, const Class & rhs ) { \
return !operator>( lhs, rhs ); \
} \
linkage bool operator>=( const Class & lhs, const Class & rhs ) { \
return !operator<( lhs, rhs ); \
}
template <typename T>
inline T & __kdtools__dereference_for_methodcall( T & o ) {
return o;
}
template <typename T>
inline T & __kdtools__dereference_for_methodcall( T * o ) {
return *o;
}
#define KDAB_SET_OBJECT_NAME( x ) __kdtools__dereference_for_methodcall( x ).setObjectName( QLatin1String( #x ) )
KDTOOLSCORE_EXPORT bool _kdCheckQtVersion_impl( unsigned int major, unsigned int minor=0, unsigned int patchlevel=0 );
static inline bool kdCheckQtVersion( unsigned int major, unsigned int minor=0, unsigned int patchlevel=0 ) {
return (major<<16|minor<<8|patchlevel) <= static_cast<unsigned int>(QT_VERSION)
|| _kdCheckQtVersion_impl( major, minor, patchlevel );
}
#define KDTOOLS_DECLARE_PRIVATE_BASE( Class ) \
protected: \
class Private; \
Private * d_func() { return _d; } \
const Private * d_func() const { return _d; } \
Class( Private * _d_, bool b ) : _d( _d_ ) { init(b); } \
private: \
void init(bool); \
private: \
Private * _d
#define KDTOOLS_DECLARE_PRIVATE_DERIVED( Class, Base ) \
protected: \
class Private; \
Private * d_func() { \
return reinterpret_cast<Private*>( Base::d_func() ); \
} \
const Private * d_func() const { \
return reinterpret_cast<const Private*>( Base::d_func() ); \
} \
Class( Private * _d_, bool b ) \
: Base( reinterpret_cast<Base::Private*>(_d_), b ) { init(b); } \
private: \
void init(bool)
#endif /* KDTOOLS_KDTOOLSGLOBAL_H */

View File

@ -0,0 +1,209 @@
/*
* SPDX-License-Identifier: LGPL-2.0-only
* License-Filename: LICENSES/LGPLv2-KDAB
*
* The KD Tools Library is Copyright (C) 2001-2010 Klaralvdalens Datakonsult AB.
*/
#include "pimpl_ptr.h"
/*!
\class pimpl_ptr:
\ingroup core smartptr
\brief Owning pointer for private implementations
\since_c 2.1
(The exception safety of this class has not been evaluated yet.)
pimpl_ptr is a smart immutable pointer, which owns the contained object. Unlike other smart pointers,
it creates a standard constructed object when instanciated via the
\link pimpl_ptr() standard constructor\endlink.
Additionally, pimpl_ptr respects constness of the pointer object and returns \c const \c T* for
a const pimpl_ptr object.
The content of a pimpl_ptr cannot be changed during it's lifetime.
\section general-use General Use
The general use case of pimpl_ptr is the "Pimpl Idiom", i.e. hiding the private implementation of a class
from the user's compiler which see \c MyClass as
\code
class MyClass
{
public:
MyClass();
~MyClass();
// public class API
int value() const;
private:
class Private; // defined later
kdtools::pimpl_ptr< Private > d;
};
\endcode
but not the private parts of it. These can only be seen (and accessed) by the code knowing \c MyClass::Private:
\code
class MyClass::Private
{
public:
int value;
};
MyClass::MyClass()
{
// d was automatically filled with new Private
d->value = 42;
}
MyClass::~MyClass()
{
// the content of d gets deleted automatically
}
int MyClass::value() const
{
// access the private part:
// since MyClass::value() is const, the returned pointee is const, too
return d->value;
}
\endcode
*/
/*!
\fn pimpl_ptr::pimpl_ptr()
Default constructor. Constructs a pimpl_tr that contains (owns) a standard constructed
instance of \c T.
\post \c *this owns a new object.
*/
/*!
\fn pimpl_ptr::pimpl_ptr( T * t )
Constructor. Constructs a pimpl_ptr that contains (owns) \a t.
\post get() == obj
*/
/*!
\fn pimpl_ptr::~pimpl_ptr()
Destructor.
\post The object previously owned by \c *this has been deleted.
*/
/*!
\fn const T * pimpl_ptr::get() const
\returns a const pointer to the contained (owned) object.
\overload
*/
/*!
\fn T * pimpl_ptr::get()
\returns a pointer to the contained (owned) object.
*/
/*!
\fn const T & pimpl_ptr::operator*() const
Dereference operator. Returns \link get() *get()\endlink.
\overload
*/
/*!
\fn T & pimpl_ptr::operator*()
Dereference operator. Returns \link get() *get()\endlink.
*/
/*!
\fn const T * pimpl_ptr::operator->() const
Member-by-pointer operator. Returns get().
\overload
*/
/*!
\fn T * pimpl_ptr::operator->()
Member-by-pointer operator. Returns get().
*/
#ifdef KDTOOLSCORE_UNITTESTS
#include <kdunittest/test.h>
#include <QObject>
#include <QPointer>
namespace
{
struct ConstTester
{
bool isConst()
{
return false;
}
bool isConst() const
{
return true;
}
};
}
KDAB_UNITTEST_SIMPLE( pimpl_ptr, "kdcoretools" ) {
{
kdtools::pimpl_ptr< QObject > p;
assertNotNull( p.get() );
assertNull( p->parent() );
}
{
QPointer< QObject > o;
{
kdtools::pimpl_ptr< QObject > qobject( new QObject );
o = qobject.get();
assertEqual( o, qobject.operator->() );
assertEqual( o, &(qobject.operator*()) );
}
assertNull( o );
}
{
const kdtools::pimpl_ptr< QObject > qobject( new QObject );
const QObject* o = qobject.get();
assertEqual( o, qobject.operator->() );
assertEqual( o, &(qobject.operator*()) );
}
{
kdtools::pimpl_ptr< QObject > o1;
assertTrue( o1 );
kdtools::pimpl_ptr< QObject > o2( 0 );
assertFalse( o2 );
}
{
const kdtools::pimpl_ptr< ConstTester > o1;
kdtools::pimpl_ptr< ConstTester > o2;
assertTrue( o1->isConst() );
assertFalse( o2->isConst() );
assertTrue( (*o1).isConst() );
assertFalse( (*o2).isConst() );
assertTrue( o1.get()->isConst() );
assertFalse( o2.get()->isConst() );
}
}
#endif // KDTOOLSCORE_UNITTESTS

View File

@ -0,0 +1,50 @@
/*
* SPDX-License-Identifier: LGPL-2.0-only
* License-Filename: LICENSES/LGPLv2-KDAB
*
* The KD Tools Library is Copyright (C) 2001-2010 Klaralvdalens Datakonsult AB.
*/
#ifndef KDTOOLSCORE_PIMPL_PTR_H
#define KDTOOLSCORE_PIMPL_PTR_H
#include "kdtoolsglobal.h"
#ifndef DOXYGEN_RUN
namespace kdtools {
#endif
template <typename T>
class pimpl_ptr {
KDAB_DISABLE_COPY( pimpl_ptr );
T * d;
public:
pimpl_ptr() : d( new T ) {}
explicit pimpl_ptr( T * t ) : d( t ) {}
~pimpl_ptr() { delete d; d = nullptr; }
T * get() { return d; }
const T * get() const { return d; }
T * operator->() { return get(); }
const T * operator->() const { return get(); }
T & operator*() { return *get(); }
const T & operator*() const { return *get(); }
KDAB_IMPLEMENT_SAFE_BOOL_OPERATOR( get() )
};
// these are not implemented, so's we can catch their use at
// link-time. Leaving them undeclared would open up a comparison
// via operator unspecified-bool-type().
template <typename T, typename S>
void operator==( const pimpl_ptr<T> &, const pimpl_ptr<S> & );
template <typename T, typename S>
void operator!=( const pimpl_ptr<T> &, const pimpl_ptr<S> & );
#ifndef DOXYGEN_RUN
} // namespace kdtools
#endif
#endif /* KDTOOLSCORE_PIMPL_PTR_H */

View File

@ -1,16 +0,0 @@
# === This file is part of Calamares - <https://calamares.io> ===
#
# SPDX-FileCopyrightText: 2023 Adriaan de Groot <groot@kde.org>
# SPDX-License-Identifier: BSD-2-Clause
#
###
#
# This is a very-stripped-down way of getting the bundled pybind11
add_library(pybind11_headers INTERFACE)
add_library(pybind11::headers ALIAS pybind11_headers)
target_include_directories(pybind11_headers INTERFACE ${CMAKE_CURRENT_SOURCE_DIR}/include)
target_link_libraries(pybind11_headers INTERFACE Python::Python) # Was searched-for at top-level

View File

@ -1,29 +0,0 @@
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>, All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Please also refer to the file .github/CONTRIBUTING.md, which clarifies licensing of
external contributions to this project including patches, pull requests, etc.

View File

@ -1,6 +0,0 @@
prune tests
recursive-include pybind11/include/pybind11 *.h
recursive-include pybind11 *.py
recursive-include pybind11 py.typed
include pybind11/share/cmake/pybind11/*.cmake
include LICENSE README.rst SECURITY.md pyproject.toml setup.py setup.cfg

View File

@ -1,180 +0,0 @@
.. figure:: https://github.com/pybind/pybind11/raw/master/docs/pybind11-logo.png
:alt: pybind11 logo
**pybind11 — Seamless operability between C++11 and Python**
|Latest Documentation Status| |Stable Documentation Status| |Gitter chat| |GitHub Discussions| |CI| |Build status|
|Repology| |PyPI package| |Conda-forge| |Python Versions|
`Setuptools example <https://github.com/pybind/python_example>`_
`Scikit-build example <https://github.com/pybind/scikit_build_example>`_
`CMake example <https://github.com/pybind/cmake_example>`_
.. start
**pybind11** is a lightweight header-only library that exposes C++ types
in Python and vice versa, mainly to create Python bindings of existing
C++ code. Its goals and syntax are similar to the excellent
`Boost.Python <http://www.boost.org/doc/libs/1_58_0/libs/python/doc/>`_
library by David Abrahams: to minimize boilerplate code in traditional
extension modules by inferring type information using compile-time
introspection.
The main issue with Boost.Python—and the reason for creating such a
similar project—is Boost. Boost is an enormously large and complex suite
of utility libraries that works with almost every C++ compiler in
existence. This compatibility has its cost: arcane template tricks and
workarounds are necessary to support the oldest and buggiest of compiler
specimens. Now that C++11-compatible compilers are widely available,
this heavy machinery has become an excessively large and unnecessary
dependency.
Think of this library as a tiny self-contained version of Boost.Python
with everything stripped away that isn't relevant for binding
generation. Without comments, the core header files only require ~4K
lines of code and depend on Python (3.6+, or PyPy) and the C++
standard library. This compact implementation was possible thanks to
some of the new C++11 language features (specifically: tuples, lambda
functions and variadic templates). Since its creation, this library has
grown beyond Boost.Python in many ways, leading to dramatically simpler
binding code in many common situations.
Tutorial and reference documentation is provided at
`pybind11.readthedocs.io <https://pybind11.readthedocs.io/en/latest>`_.
A PDF version of the manual is available
`here <https://pybind11.readthedocs.io/_/downloads/en/latest/pdf/>`_.
And the source code is always available at
`github.com/pybind/pybind11 <https://github.com/pybind/pybind11>`_.
Core features
-------------
pybind11 can map the following core C++ features to Python:
- Functions accepting and returning custom data structures per value,
reference, or pointer
- Instance methods and static methods
- Overloaded functions
- Instance attributes and static attributes
- Arbitrary exception types
- Enumerations
- Callbacks
- Iterators and ranges
- Custom operators
- Single and multiple inheritance
- STL data structures
- Smart pointers with reference counting like ``std::shared_ptr``
- Internal references with correct reference counting
- C++ classes with virtual (and pure virtual) methods can be extended
in Python
Goodies
-------
In addition to the core functionality, pybind11 provides some extra
goodies:
- Python 3.6+, and PyPy3 7.3 are supported with an implementation-agnostic
interface (pybind11 2.9 was the last version to support Python 2 and 3.5).
- It is possible to bind C++11 lambda functions with captured
variables. The lambda capture data is stored inside the resulting
Python function object.
- pybind11 uses C++11 move constructors and move assignment operators
whenever possible to efficiently transfer custom data types.
- It's easy to expose the internal storage of custom data types through
Pythons' buffer protocols. This is handy e.g. for fast conversion
between C++ matrix classes like Eigen and NumPy without expensive
copy operations.
- pybind11 can automatically vectorize functions so that they are
transparently applied to all entries of one or more NumPy array
arguments.
- Python's slice-based access and assignment operations can be
supported with just a few lines of code.
- Everything is contained in just a few header files; there is no need
to link against any additional libraries.
- Binaries are generally smaller by a factor of at least 2 compared to
equivalent bindings generated by Boost.Python. A recent pybind11
conversion of PyRosetta, an enormous Boost.Python binding project,
`reported <https://graylab.jhu.edu/Sergey/2016.RosettaCon/PyRosetta-4.pdf>`_
a binary size reduction of **5.4x** and compile time reduction by
**5.8x**.
- Function signatures are precomputed at compile time (using
``constexpr``), leading to smaller binaries.
- With little extra effort, C++ types can be pickled and unpickled
similar to regular Python objects.
Supported compilers
-------------------
1. Clang/LLVM 3.3 or newer (for Apple Xcode's clang, this is 5.0.0 or
newer)
2. GCC 4.8 or newer
3. Microsoft Visual Studio 2017 or newer
4. Intel classic C++ compiler 18 or newer (ICC 20.2 tested in CI)
5. Cygwin/GCC (previously tested on 2.5.1)
6. NVCC (CUDA 11.0 tested in CI)
7. NVIDIA PGI (20.9 tested in CI)
About
-----
This project was created by `Wenzel
Jakob <http://rgl.epfl.ch/people/wjakob>`_. Significant features and/or
improvements to the code were contributed by Jonas Adler, Lori A. Burns,
Sylvain Corlay, Eric Cousineau, Aaron Gokaslan, Ralf Grosse-Kunstleve, Trent Houliston, Axel
Huebl, @hulucc, Yannick Jadoul, Sergey Lyskov, Johan Mabille, Tomasz Miąsko,
Dean Moldovan, Ben Pritchard, Jason Rhinelander, Boris Schäling, Pim
Schellart, Henry Schreiner, Ivan Smirnov, Boris Staletic, and Patrick Stewart.
We thank Google for a generous financial contribution to the continuous
integration infrastructure used by this project.
Contributing
~~~~~~~~~~~~
See the `contributing
guide <https://github.com/pybind/pybind11/blob/master/.github/CONTRIBUTING.md>`_
for information on building and contributing to pybind11.
License
~~~~~~~
pybind11 is provided under a BSD-style license that can be found in the
`LICENSE <https://github.com/pybind/pybind11/blob/master/LICENSE>`_
file. By using, distributing, or contributing to this project, you agree
to the terms and conditions of this license.
.. |Latest Documentation Status| image:: https://readthedocs.org/projects/pybind11/badge?version=latest
:target: http://pybind11.readthedocs.org/en/latest
.. |Stable Documentation Status| image:: https://img.shields.io/badge/docs-stable-blue.svg
:target: http://pybind11.readthedocs.org/en/stable
.. |Gitter chat| image:: https://img.shields.io/gitter/room/gitterHQ/gitter.svg
:target: https://gitter.im/pybind/Lobby
.. |CI| image:: https://github.com/pybind/pybind11/workflows/CI/badge.svg
:target: https://github.com/pybind/pybind11/actions
.. |Build status| image:: https://ci.appveyor.com/api/projects/status/riaj54pn4h08xy40?svg=true
:target: https://ci.appveyor.com/project/wjakob/pybind11
.. |PyPI package| image:: https://img.shields.io/pypi/v/pybind11.svg
:target: https://pypi.org/project/pybind11/
.. |Conda-forge| image:: https://img.shields.io/conda/vn/conda-forge/pybind11.svg
:target: https://github.com/conda-forge/pybind11-feedstock
.. |Repology| image:: https://repology.org/badge/latest-versions/python:pybind11.svg
:target: https://repology.org/project/python:pybind11/versions
.. |Python Versions| image:: https://img.shields.io/pypi/pyversions/pybind11.svg
:target: https://pypi.org/project/pybind11/
.. |GitHub Discussions| image:: https://img.shields.io/static/v1?label=Discussions&message=Ask&color=blue&logo=github
:target: https://github.com/pybind/pybind11/discussions

View File

@ -1,13 +0,0 @@
# Security Policy
## Supported Versions
Security updates are applied only to the latest release.
## Reporting a Vulnerability
If you have discovered a security vulnerability in this project, please report it privately. **Do not disclose it as a public issue.** This gives us time to work with you to fix the issue before public exposure, reducing the chance that the exploit will be used before a patch is released.
Please disclose it at [security advisory](https://github.com/pybind/pybind11/security/advisories/new).
This project is maintained by a team of volunteers on a reasonable-effort basis. As such, please give us at least 90 days to work on a fix before public exposure.

View File

@ -1,690 +0,0 @@
/*
pybind11/attr.h: Infrastructure for processing custom
type and function attributes
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "detail/common.h"
#include "cast.h"
#include <functional>
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
/// \addtogroup annotations
/// @{
/// Annotation for methods
struct is_method {
handle class_;
explicit is_method(const handle &c) : class_(c) {}
};
/// Annotation for setters
struct is_setter {};
/// Annotation for operators
struct is_operator {};
/// Annotation for classes that cannot be subclassed
struct is_final {};
/// Annotation for parent scope
struct scope {
handle value;
explicit scope(const handle &s) : value(s) {}
};
/// Annotation for documentation
struct doc {
const char *value;
explicit doc(const char *value) : value(value) {}
};
/// Annotation for function names
struct name {
const char *value;
explicit name(const char *value) : value(value) {}
};
/// Annotation indicating that a function is an overload associated with a given "sibling"
struct sibling {
handle value;
explicit sibling(const handle &value) : value(value.ptr()) {}
};
/// Annotation indicating that a class derives from another given type
template <typename T>
struct base {
PYBIND11_DEPRECATED(
"base<T>() was deprecated in favor of specifying 'T' as a template argument to class_")
base() = default;
};
/// Keep patient alive while nurse lives
template <size_t Nurse, size_t Patient>
struct keep_alive {};
/// Annotation indicating that a class is involved in a multiple inheritance relationship
struct multiple_inheritance {};
/// Annotation which enables dynamic attributes, i.e. adds `__dict__` to a class
struct dynamic_attr {};
/// Annotation which enables the buffer protocol for a type
struct buffer_protocol {};
/// Annotation which requests that a special metaclass is created for a type
struct metaclass {
handle value;
PYBIND11_DEPRECATED("py::metaclass() is no longer required. It's turned on by default now.")
metaclass() = default;
/// Override pybind11's default metaclass
explicit metaclass(handle value) : value(value) {}
};
/// Specifies a custom callback with signature `void (PyHeapTypeObject*)` that
/// may be used to customize the Python type.
///
/// The callback is invoked immediately before `PyType_Ready`.
///
/// Note: This is an advanced interface, and uses of it may require changes to
/// work with later versions of pybind11. You may wish to consult the
/// implementation of `make_new_python_type` in `detail/classes.h` to understand
/// the context in which the callback will be run.
struct custom_type_setup {
using callback = std::function<void(PyHeapTypeObject *heap_type)>;
explicit custom_type_setup(callback value) : value(std::move(value)) {}
callback value;
};
/// Annotation that marks a class as local to the module:
struct module_local {
const bool value;
constexpr explicit module_local(bool v = true) : value(v) {}
};
/// Annotation to mark enums as an arithmetic type
struct arithmetic {};
/// Mark a function for addition at the beginning of the existing overload chain instead of the end
struct prepend {};
/** \rst
A call policy which places one or more guard variables (``Ts...``) around the function call.
For example, this definition:
.. code-block:: cpp
m.def("foo", foo, py::call_guard<T>());
is equivalent to the following pseudocode:
.. code-block:: cpp
m.def("foo", [](args...) {
T scope_guard;
return foo(args...); // forwarded arguments
});
\endrst */
template <typename... Ts>
struct call_guard;
template <>
struct call_guard<> {
using type = detail::void_type;
};
template <typename T>
struct call_guard<T> {
static_assert(std::is_default_constructible<T>::value,
"The guard type must be default constructible");
using type = T;
};
template <typename T, typename... Ts>
struct call_guard<T, Ts...> {
struct type {
T guard{}; // Compose multiple guard types with left-to-right default-constructor order
typename call_guard<Ts...>::type next{};
};
};
/// @} annotations
PYBIND11_NAMESPACE_BEGIN(detail)
/* Forward declarations */
enum op_id : int;
enum op_type : int;
struct undefined_t;
template <op_id id, op_type ot, typename L = undefined_t, typename R = undefined_t>
struct op_;
void keep_alive_impl(size_t Nurse, size_t Patient, function_call &call, handle ret);
/// Internal data structure which holds metadata about a keyword argument
struct argument_record {
const char *name; ///< Argument name
const char *descr; ///< Human-readable version of the argument value
handle value; ///< Associated Python object
bool convert : 1; ///< True if the argument is allowed to convert when loading
bool none : 1; ///< True if None is allowed when loading
argument_record(const char *name, const char *descr, handle value, bool convert, bool none)
: name(name), descr(descr), value(value), convert(convert), none(none) {}
};
/// Internal data structure which holds metadata about a bound function (signature, overloads,
/// etc.)
struct function_record {
function_record()
: is_constructor(false), is_new_style_constructor(false), is_stateless(false),
is_operator(false), is_method(false), is_setter(false), has_args(false),
has_kwargs(false), prepend(false) {}
/// Function name
char *name = nullptr; /* why no C++ strings? They generate heavier code.. */
// User-specified documentation string
char *doc = nullptr;
/// Human-readable version of the function signature
char *signature = nullptr;
/// List of registered keyword arguments
std::vector<argument_record> args;
/// Pointer to lambda function which converts arguments and performs the actual call
handle (*impl)(function_call &) = nullptr;
/// Storage for the wrapped function pointer and captured data, if any
void *data[3] = {};
/// Pointer to custom destructor for 'data' (if needed)
void (*free_data)(function_record *ptr) = nullptr;
/// Return value policy associated with this function
return_value_policy policy = return_value_policy::automatic;
/// True if name == '__init__'
bool is_constructor : 1;
/// True if this is a new-style `__init__` defined in `detail/init.h`
bool is_new_style_constructor : 1;
/// True if this is a stateless function pointer
bool is_stateless : 1;
/// True if this is an operator (__add__), etc.
bool is_operator : 1;
/// True if this is a method
bool is_method : 1;
/// True if this is a setter
bool is_setter : 1;
/// True if the function has a '*args' argument
bool has_args : 1;
/// True if the function has a '**kwargs' argument
bool has_kwargs : 1;
/// True if this function is to be inserted at the beginning of the overload resolution chain
bool prepend : 1;
/// Number of arguments (including py::args and/or py::kwargs, if present)
std::uint16_t nargs;
/// Number of leading positional arguments, which are terminated by a py::args or py::kwargs
/// argument or by a py::kw_only annotation.
std::uint16_t nargs_pos = 0;
/// Number of leading arguments (counted in `nargs`) that are positional-only
std::uint16_t nargs_pos_only = 0;
/// Python method object
PyMethodDef *def = nullptr;
/// Python handle to the parent scope (a class or a module)
handle scope;
/// Python handle to the sibling function representing an overload chain
handle sibling;
/// Pointer to next overload
function_record *next = nullptr;
};
/// Special data structure which (temporarily) holds metadata about a bound class
struct type_record {
PYBIND11_NOINLINE type_record()
: multiple_inheritance(false), dynamic_attr(false), buffer_protocol(false),
default_holder(true), module_local(false), is_final(false) {}
/// Handle to the parent scope
handle scope;
/// Name of the class
const char *name = nullptr;
// Pointer to RTTI type_info data structure
const std::type_info *type = nullptr;
/// How large is the underlying C++ type?
size_t type_size = 0;
/// What is the alignment of the underlying C++ type?
size_t type_align = 0;
/// How large is the type's holder?
size_t holder_size = 0;
/// The global operator new can be overridden with a class-specific variant
void *(*operator_new)(size_t) = nullptr;
/// Function pointer to class_<..>::init_instance
void (*init_instance)(instance *, const void *) = nullptr;
/// Function pointer to class_<..>::dealloc
void (*dealloc)(detail::value_and_holder &) = nullptr;
/// List of base classes of the newly created type
list bases;
/// Optional docstring
const char *doc = nullptr;
/// Custom metaclass (optional)
handle metaclass;
/// Custom type setup.
custom_type_setup::callback custom_type_setup_callback;
/// Multiple inheritance marker
bool multiple_inheritance : 1;
/// Does the class manage a __dict__?
bool dynamic_attr : 1;
/// Does the class implement the buffer protocol?
bool buffer_protocol : 1;
/// Is the default (unique_ptr) holder type used?
bool default_holder : 1;
/// Is the class definition local to the module shared object?
bool module_local : 1;
/// Is the class inheritable from python classes?
bool is_final : 1;
PYBIND11_NOINLINE void add_base(const std::type_info &base, void *(*caster)(void *) ) {
auto *base_info = detail::get_type_info(base, false);
if (!base_info) {
std::string tname(base.name());
detail::clean_type_id(tname);
pybind11_fail("generic_type: type \"" + std::string(name)
+ "\" referenced unknown base type \"" + tname + "\"");
}
if (default_holder != base_info->default_holder) {
std::string tname(base.name());
detail::clean_type_id(tname);
pybind11_fail("generic_type: type \"" + std::string(name) + "\" "
+ (default_holder ? "does not have" : "has")
+ " a non-default holder type while its base \"" + tname + "\" "
+ (base_info->default_holder ? "does not" : "does"));
}
bases.append((PyObject *) base_info->type);
#if PY_VERSION_HEX < 0x030B0000
dynamic_attr |= base_info->type->tp_dictoffset != 0;
#else
dynamic_attr |= (base_info->type->tp_flags & Py_TPFLAGS_MANAGED_DICT) != 0;
#endif
if (caster) {
base_info->implicit_casts.emplace_back(type, caster);
}
}
};
inline function_call::function_call(const function_record &f, handle p) : func(f), parent(p) {
args.reserve(f.nargs);
args_convert.reserve(f.nargs);
}
/// Tag for a new-style `__init__` defined in `detail/init.h`
struct is_new_style_constructor {};
/**
* Partial template specializations to process custom attributes provided to
* cpp_function_ and class_. These are either used to initialize the respective
* fields in the type_record and function_record data structures or executed at
* runtime to deal with custom call policies (e.g. keep_alive).
*/
template <typename T, typename SFINAE = void>
struct process_attribute;
template <typename T>
struct process_attribute_default {
/// Default implementation: do nothing
static void init(const T &, function_record *) {}
static void init(const T &, type_record *) {}
static void precall(function_call &) {}
static void postcall(function_call &, handle) {}
};
/// Process an attribute specifying the function's name
template <>
struct process_attribute<name> : process_attribute_default<name> {
static void init(const name &n, function_record *r) { r->name = const_cast<char *>(n.value); }
};
/// Process an attribute specifying the function's docstring
template <>
struct process_attribute<doc> : process_attribute_default<doc> {
static void init(const doc &n, function_record *r) { r->doc = const_cast<char *>(n.value); }
};
/// Process an attribute specifying the function's docstring (provided as a C-style string)
template <>
struct process_attribute<const char *> : process_attribute_default<const char *> {
static void init(const char *d, function_record *r) { r->doc = const_cast<char *>(d); }
static void init(const char *d, type_record *r) { r->doc = d; }
};
template <>
struct process_attribute<char *> : process_attribute<const char *> {};
/// Process an attribute indicating the function's return value policy
template <>
struct process_attribute<return_value_policy> : process_attribute_default<return_value_policy> {
static void init(const return_value_policy &p, function_record *r) { r->policy = p; }
};
/// Process an attribute which indicates that this is an overloaded function associated with a
/// given sibling
template <>
struct process_attribute<sibling> : process_attribute_default<sibling> {
static void init(const sibling &s, function_record *r) { r->sibling = s.value; }
};
/// Process an attribute which indicates that this function is a method
template <>
struct process_attribute<is_method> : process_attribute_default<is_method> {
static void init(const is_method &s, function_record *r) {
r->is_method = true;
r->scope = s.class_;
}
};
/// Process an attribute which indicates that this function is a setter
template <>
struct process_attribute<is_setter> : process_attribute_default<is_setter> {
static void init(const is_setter &, function_record *r) { r->is_setter = true; }
};
/// Process an attribute which indicates the parent scope of a method
template <>
struct process_attribute<scope> : process_attribute_default<scope> {
static void init(const scope &s, function_record *r) { r->scope = s.value; }
};
/// Process an attribute which indicates that this function is an operator
template <>
struct process_attribute<is_operator> : process_attribute_default<is_operator> {
static void init(const is_operator &, function_record *r) { r->is_operator = true; }
};
template <>
struct process_attribute<is_new_style_constructor>
: process_attribute_default<is_new_style_constructor> {
static void init(const is_new_style_constructor &, function_record *r) {
r->is_new_style_constructor = true;
}
};
inline void check_kw_only_arg(const arg &a, function_record *r) {
if (r->args.size() > r->nargs_pos && (!a.name || a.name[0] == '\0')) {
pybind11_fail("arg(): cannot specify an unnamed argument after a kw_only() annotation or "
"args() argument");
}
}
inline void append_self_arg_if_needed(function_record *r) {
if (r->is_method && r->args.empty()) {
r->args.emplace_back("self", nullptr, handle(), /*convert=*/true, /*none=*/false);
}
}
/// Process a keyword argument attribute (*without* a default value)
template <>
struct process_attribute<arg> : process_attribute_default<arg> {
static void init(const arg &a, function_record *r) {
append_self_arg_if_needed(r);
r->args.emplace_back(a.name, nullptr, handle(), !a.flag_noconvert, a.flag_none);
check_kw_only_arg(a, r);
}
};
/// Process a keyword argument attribute (*with* a default value)
template <>
struct process_attribute<arg_v> : process_attribute_default<arg_v> {
static void init(const arg_v &a, function_record *r) {
if (r->is_method && r->args.empty()) {
r->args.emplace_back(
"self", /*descr=*/nullptr, /*parent=*/handle(), /*convert=*/true, /*none=*/false);
}
if (!a.value) {
#if defined(PYBIND11_DETAILED_ERROR_MESSAGES)
std::string descr("'");
if (a.name) {
descr += std::string(a.name) + ": ";
}
descr += a.type + "'";
if (r->is_method) {
if (r->name) {
descr += " in method '" + (std::string) str(r->scope) + "."
+ (std::string) r->name + "'";
} else {
descr += " in method of '" + (std::string) str(r->scope) + "'";
}
} else if (r->name) {
descr += " in function '" + (std::string) r->name + "'";
}
pybind11_fail("arg(): could not convert default argument " + descr
+ " into a Python object (type not registered yet?)");
#else
pybind11_fail("arg(): could not convert default argument "
"into a Python object (type not registered yet?). "
"#define PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for "
"more information.");
#endif
}
r->args.emplace_back(a.name, a.descr, a.value.inc_ref(), !a.flag_noconvert, a.flag_none);
check_kw_only_arg(a, r);
}
};
/// Process a keyword-only-arguments-follow pseudo argument
template <>
struct process_attribute<kw_only> : process_attribute_default<kw_only> {
static void init(const kw_only &, function_record *r) {
append_self_arg_if_needed(r);
if (r->has_args && r->nargs_pos != static_cast<std::uint16_t>(r->args.size())) {
pybind11_fail("Mismatched args() and kw_only(): they must occur at the same relative "
"argument location (or omit kw_only() entirely)");
}
r->nargs_pos = static_cast<std::uint16_t>(r->args.size());
}
};
/// Process a positional-only-argument maker
template <>
struct process_attribute<pos_only> : process_attribute_default<pos_only> {
static void init(const pos_only &, function_record *r) {
append_self_arg_if_needed(r);
r->nargs_pos_only = static_cast<std::uint16_t>(r->args.size());
if (r->nargs_pos_only > r->nargs_pos) {
pybind11_fail("pos_only(): cannot follow a py::args() argument");
}
// It also can't follow a kw_only, but a static_assert in pybind11.h checks that
}
};
/// Process a parent class attribute. Single inheritance only (class_ itself already guarantees
/// that)
template <typename T>
struct process_attribute<T, enable_if_t<is_pyobject<T>::value>>
: process_attribute_default<handle> {
static void init(const handle &h, type_record *r) { r->bases.append(h); }
};
/// Process a parent class attribute (deprecated, does not support multiple inheritance)
template <typename T>
struct process_attribute<base<T>> : process_attribute_default<base<T>> {
static void init(const base<T> &, type_record *r) { r->add_base(typeid(T), nullptr); }
};
/// Process a multiple inheritance attribute
template <>
struct process_attribute<multiple_inheritance> : process_attribute_default<multiple_inheritance> {
static void init(const multiple_inheritance &, type_record *r) {
r->multiple_inheritance = true;
}
};
template <>
struct process_attribute<dynamic_attr> : process_attribute_default<dynamic_attr> {
static void init(const dynamic_attr &, type_record *r) { r->dynamic_attr = true; }
};
template <>
struct process_attribute<custom_type_setup> {
static void init(const custom_type_setup &value, type_record *r) {
r->custom_type_setup_callback = value.value;
}
};
template <>
struct process_attribute<is_final> : process_attribute_default<is_final> {
static void init(const is_final &, type_record *r) { r->is_final = true; }
};
template <>
struct process_attribute<buffer_protocol> : process_attribute_default<buffer_protocol> {
static void init(const buffer_protocol &, type_record *r) { r->buffer_protocol = true; }
};
template <>
struct process_attribute<metaclass> : process_attribute_default<metaclass> {
static void init(const metaclass &m, type_record *r) { r->metaclass = m.value; }
};
template <>
struct process_attribute<module_local> : process_attribute_default<module_local> {
static void init(const module_local &l, type_record *r) { r->module_local = l.value; }
};
/// Process a 'prepend' attribute, putting this at the beginning of the overload chain
template <>
struct process_attribute<prepend> : process_attribute_default<prepend> {
static void init(const prepend &, function_record *r) { r->prepend = true; }
};
/// Process an 'arithmetic' attribute for enums (does nothing here)
template <>
struct process_attribute<arithmetic> : process_attribute_default<arithmetic> {};
template <typename... Ts>
struct process_attribute<call_guard<Ts...>> : process_attribute_default<call_guard<Ts...>> {};
/**
* Process a keep_alive call policy -- invokes keep_alive_impl during the
* pre-call handler if both Nurse, Patient != 0 and use the post-call handler
* otherwise
*/
template <size_t Nurse, size_t Patient>
struct process_attribute<keep_alive<Nurse, Patient>>
: public process_attribute_default<keep_alive<Nurse, Patient>> {
template <size_t N = Nurse, size_t P = Patient, enable_if_t<N != 0 && P != 0, int> = 0>
static void precall(function_call &call) {
keep_alive_impl(Nurse, Patient, call, handle());
}
template <size_t N = Nurse, size_t P = Patient, enable_if_t<N != 0 && P != 0, int> = 0>
static void postcall(function_call &, handle) {}
template <size_t N = Nurse, size_t P = Patient, enable_if_t<N == 0 || P == 0, int> = 0>
static void precall(function_call &) {}
template <size_t N = Nurse, size_t P = Patient, enable_if_t<N == 0 || P == 0, int> = 0>
static void postcall(function_call &call, handle ret) {
keep_alive_impl(Nurse, Patient, call, ret);
}
};
/// Recursively iterate over variadic template arguments
template <typename... Args>
struct process_attributes {
static void init(const Args &...args, function_record *r) {
PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(r);
PYBIND11_WORKAROUND_INCORRECT_GCC_UNUSED_BUT_SET_PARAMETER(r);
using expander = int[];
(void) expander{
0, ((void) process_attribute<typename std::decay<Args>::type>::init(args, r), 0)...};
}
static void init(const Args &...args, type_record *r) {
PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(r);
PYBIND11_WORKAROUND_INCORRECT_GCC_UNUSED_BUT_SET_PARAMETER(r);
using expander = int[];
(void) expander{0,
(process_attribute<typename std::decay<Args>::type>::init(args, r), 0)...};
}
static void precall(function_call &call) {
PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(call);
using expander = int[];
(void) expander{0,
(process_attribute<typename std::decay<Args>::type>::precall(call), 0)...};
}
static void postcall(function_call &call, handle fn_ret) {
PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(call, fn_ret);
PYBIND11_WORKAROUND_INCORRECT_GCC_UNUSED_BUT_SET_PARAMETER(fn_ret);
using expander = int[];
(void) expander{
0, (process_attribute<typename std::decay<Args>::type>::postcall(call, fn_ret), 0)...};
}
};
template <typename T>
using is_call_guard = is_instantiation<call_guard, T>;
/// Extract the ``type`` from the first `call_guard` in `Extras...` (or `void_type` if none found)
template <typename... Extra>
using extract_guard_t = typename exactly_one_t<is_call_guard, call_guard<>, Extra...>::type;
/// Check the number of named arguments at compile time
template <typename... Extra,
size_t named = constexpr_sum(std::is_base_of<arg, Extra>::value...),
size_t self = constexpr_sum(std::is_same<is_method, Extra>::value...)>
constexpr bool expected_num_args(size_t nargs, bool has_args, bool has_kwargs) {
PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(nargs, has_args, has_kwargs);
return named == 0 || (self + named + size_t(has_args) + size_t(has_kwargs)) == nargs;
}
PYBIND11_NAMESPACE_END(detail)
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)

View File

@ -1,208 +0,0 @@
/*
pybind11/buffer_info.h: Python buffer object interface
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "detail/common.h"
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
PYBIND11_NAMESPACE_BEGIN(detail)
// Default, C-style strides
inline std::vector<ssize_t> c_strides(const std::vector<ssize_t> &shape, ssize_t itemsize) {
auto ndim = shape.size();
std::vector<ssize_t> strides(ndim, itemsize);
if (ndim > 0) {
for (size_t i = ndim - 1; i > 0; --i) {
strides[i - 1] = strides[i] * shape[i];
}
}
return strides;
}
// F-style strides; default when constructing an array_t with `ExtraFlags & f_style`
inline std::vector<ssize_t> f_strides(const std::vector<ssize_t> &shape, ssize_t itemsize) {
auto ndim = shape.size();
std::vector<ssize_t> strides(ndim, itemsize);
for (size_t i = 1; i < ndim; ++i) {
strides[i] = strides[i - 1] * shape[i - 1];
}
return strides;
}
template <typename T, typename SFINAE = void>
struct compare_buffer_info;
PYBIND11_NAMESPACE_END(detail)
/// Information record describing a Python buffer object
struct buffer_info {
void *ptr = nullptr; // Pointer to the underlying storage
ssize_t itemsize = 0; // Size of individual items in bytes
ssize_t size = 0; // Total number of entries
std::string format; // For homogeneous buffers, this should be set to
// format_descriptor<T>::format()
ssize_t ndim = 0; // Number of dimensions
std::vector<ssize_t> shape; // Shape of the tensor (1 entry per dimension)
std::vector<ssize_t> strides; // Number of bytes between adjacent entries
// (for each per dimension)
bool readonly = false; // flag to indicate if the underlying storage may be written to
buffer_info() = default;
buffer_info(void *ptr,
ssize_t itemsize,
const std::string &format,
ssize_t ndim,
detail::any_container<ssize_t> shape_in,
detail::any_container<ssize_t> strides_in,
bool readonly = false)
: ptr(ptr), itemsize(itemsize), size(1), format(format), ndim(ndim),
shape(std::move(shape_in)), strides(std::move(strides_in)), readonly(readonly) {
if (ndim != (ssize_t) shape.size() || ndim != (ssize_t) strides.size()) {
pybind11_fail("buffer_info: ndim doesn't match shape and/or strides length");
}
for (size_t i = 0; i < (size_t) ndim; ++i) {
size *= shape[i];
}
}
template <typename T>
buffer_info(T *ptr,
detail::any_container<ssize_t> shape_in,
detail::any_container<ssize_t> strides_in,
bool readonly = false)
: buffer_info(private_ctr_tag(),
ptr,
sizeof(T),
format_descriptor<T>::format(),
static_cast<ssize_t>(shape_in->size()),
std::move(shape_in),
std::move(strides_in),
readonly) {}
buffer_info(void *ptr,
ssize_t itemsize,
const std::string &format,
ssize_t size,
bool readonly = false)
: buffer_info(ptr, itemsize, format, 1, {size}, {itemsize}, readonly) {}
template <typename T>
buffer_info(T *ptr, ssize_t size, bool readonly = false)
: buffer_info(ptr, sizeof(T), format_descriptor<T>::format(), size, readonly) {}
template <typename T>
buffer_info(const T *ptr, ssize_t size, bool readonly = true)
: buffer_info(
const_cast<T *>(ptr), sizeof(T), format_descriptor<T>::format(), size, readonly) {}
explicit buffer_info(Py_buffer *view, bool ownview = true)
: buffer_info(
view->buf,
view->itemsize,
view->format,
view->ndim,
{view->shape, view->shape + view->ndim},
/* Though buffer::request() requests PyBUF_STRIDES, ctypes objects
* ignore this flag and return a view with NULL strides.
* When strides are NULL, build them manually. */
view->strides
? std::vector<ssize_t>(view->strides, view->strides + view->ndim)
: detail::c_strides({view->shape, view->shape + view->ndim}, view->itemsize),
(view->readonly != 0)) {
// NOLINTNEXTLINE(cppcoreguidelines-prefer-member-initializer)
this->m_view = view;
// NOLINTNEXTLINE(cppcoreguidelines-prefer-member-initializer)
this->ownview = ownview;
}
buffer_info(const buffer_info &) = delete;
buffer_info &operator=(const buffer_info &) = delete;
buffer_info(buffer_info &&other) noexcept { (*this) = std::move(other); }
buffer_info &operator=(buffer_info &&rhs) noexcept {
ptr = rhs.ptr;
itemsize = rhs.itemsize;
size = rhs.size;
format = std::move(rhs.format);
ndim = rhs.ndim;
shape = std::move(rhs.shape);
strides = std::move(rhs.strides);
std::swap(m_view, rhs.m_view);
std::swap(ownview, rhs.ownview);
readonly = rhs.readonly;
return *this;
}
~buffer_info() {
if (m_view && ownview) {
PyBuffer_Release(m_view);
delete m_view;
}
}
Py_buffer *view() const { return m_view; }
Py_buffer *&view() { return m_view; }
/* True if the buffer item type is equivalent to `T`. */
// To define "equivalent" by example:
// `buffer_info::item_type_is_equivalent_to<int>(b)` and
// `buffer_info::item_type_is_equivalent_to<long>(b)` may both be true
// on some platforms, but `int` and `unsigned` will never be equivalent.
// For the ground truth, please inspect `detail::compare_buffer_info<>`.
template <typename T>
bool item_type_is_equivalent_to() const {
return detail::compare_buffer_info<T>::compare(*this);
}
private:
struct private_ctr_tag {};
buffer_info(private_ctr_tag,
void *ptr,
ssize_t itemsize,
const std::string &format,
ssize_t ndim,
detail::any_container<ssize_t> &&shape_in,
detail::any_container<ssize_t> &&strides_in,
bool readonly)
: buffer_info(
ptr, itemsize, format, ndim, std::move(shape_in), std::move(strides_in), readonly) {}
Py_buffer *m_view = nullptr;
bool ownview = false;
};
PYBIND11_NAMESPACE_BEGIN(detail)
template <typename T, typename SFINAE>
struct compare_buffer_info {
static bool compare(const buffer_info &b) {
// NOLINTNEXTLINE(bugprone-sizeof-expression) Needed for `PyObject *`
return b.format == format_descriptor<T>::format() && b.itemsize == (ssize_t) sizeof(T);
}
};
template <typename T>
struct compare_buffer_info<T, detail::enable_if_t<std::is_integral<T>::value>> {
static bool compare(const buffer_info &b) {
return (size_t) b.itemsize == sizeof(T)
&& (b.format == format_descriptor<T>::value
|| ((sizeof(T) == sizeof(long))
&& b.format == (std::is_unsigned<T>::value ? "L" : "l"))
|| ((sizeof(T) == sizeof(size_t))
&& b.format == (std::is_unsigned<T>::value ? "N" : "n")));
}
};
PYBIND11_NAMESPACE_END(detail)
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)

File diff suppressed because it is too large Load Diff

View File

@ -1,225 +0,0 @@
/*
pybind11/chrono.h: Transparent conversion between std::chrono and python's datetime
Copyright (c) 2016 Trent Houliston <trent@houliston.me> and
Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "pybind11.h"
#include <chrono>
#include <cmath>
#include <ctime>
#include <datetime.h>
#include <mutex>
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
PYBIND11_NAMESPACE_BEGIN(detail)
template <typename type>
class duration_caster {
public:
using rep = typename type::rep;
using period = typename type::period;
// signed 25 bits required by the standard.
using days = std::chrono::duration<int_least32_t, std::ratio<86400>>;
bool load(handle src, bool) {
using namespace std::chrono;
// Lazy initialise the PyDateTime import
if (!PyDateTimeAPI) {
PyDateTime_IMPORT;
}
if (!src) {
return false;
}
// If invoked with datetime.delta object
if (PyDelta_Check(src.ptr())) {
value = type(duration_cast<duration<rep, period>>(
days(PyDateTime_DELTA_GET_DAYS(src.ptr()))
+ seconds(PyDateTime_DELTA_GET_SECONDS(src.ptr()))
+ microseconds(PyDateTime_DELTA_GET_MICROSECONDS(src.ptr()))));
return true;
}
// If invoked with a float we assume it is seconds and convert
if (PyFloat_Check(src.ptr())) {
value = type(duration_cast<duration<rep, period>>(
duration<double>(PyFloat_AsDouble(src.ptr()))));
return true;
}
return false;
}
// If this is a duration just return it back
static const std::chrono::duration<rep, period> &
get_duration(const std::chrono::duration<rep, period> &src) {
return src;
}
// If this is a time_point get the time_since_epoch
template <typename Clock>
static std::chrono::duration<rep, period>
get_duration(const std::chrono::time_point<Clock, std::chrono::duration<rep, period>> &src) {
return src.time_since_epoch();
}
static handle cast(const type &src, return_value_policy /* policy */, handle /* parent */) {
using namespace std::chrono;
// Use overloaded function to get our duration from our source
// Works out if it is a duration or time_point and get the duration
auto d = get_duration(src);
// Lazy initialise the PyDateTime import
if (!PyDateTimeAPI) {
PyDateTime_IMPORT;
}
// Declare these special duration types so the conversions happen with the correct
// primitive types (int)
using dd_t = duration<int, std::ratio<86400>>;
using ss_t = duration<int, std::ratio<1>>;
using us_t = duration<int, std::micro>;
auto dd = duration_cast<dd_t>(d);
auto subd = d - dd;
auto ss = duration_cast<ss_t>(subd);
auto us = duration_cast<us_t>(subd - ss);
return PyDelta_FromDSU(dd.count(), ss.count(), us.count());
}
PYBIND11_TYPE_CASTER(type, const_name("datetime.timedelta"));
};
inline std::tm *localtime_thread_safe(const std::time_t *time, std::tm *buf) {
#if (defined(__STDC_LIB_EXT1__) && defined(__STDC_WANT_LIB_EXT1__)) || defined(_MSC_VER)
if (localtime_s(buf, time))
return nullptr;
return buf;
#else
static std::mutex mtx;
std::lock_guard<std::mutex> lock(mtx);
std::tm *tm_ptr = std::localtime(time);
if (tm_ptr != nullptr) {
*buf = *tm_ptr;
}
return tm_ptr;
#endif
}
// This is for casting times on the system clock into datetime.datetime instances
template <typename Duration>
class type_caster<std::chrono::time_point<std::chrono::system_clock, Duration>> {
public:
using type = std::chrono::time_point<std::chrono::system_clock, Duration>;
bool load(handle src, bool) {
using namespace std::chrono;
// Lazy initialise the PyDateTime import
if (!PyDateTimeAPI) {
PyDateTime_IMPORT;
}
if (!src) {
return false;
}
std::tm cal;
microseconds msecs;
if (PyDateTime_Check(src.ptr())) {
cal.tm_sec = PyDateTime_DATE_GET_SECOND(src.ptr());
cal.tm_min = PyDateTime_DATE_GET_MINUTE(src.ptr());
cal.tm_hour = PyDateTime_DATE_GET_HOUR(src.ptr());
cal.tm_mday = PyDateTime_GET_DAY(src.ptr());
cal.tm_mon = PyDateTime_GET_MONTH(src.ptr()) - 1;
cal.tm_year = PyDateTime_GET_YEAR(src.ptr()) - 1900;
cal.tm_isdst = -1;
msecs = microseconds(PyDateTime_DATE_GET_MICROSECOND(src.ptr()));
} else if (PyDate_Check(src.ptr())) {
cal.tm_sec = 0;
cal.tm_min = 0;
cal.tm_hour = 0;
cal.tm_mday = PyDateTime_GET_DAY(src.ptr());
cal.tm_mon = PyDateTime_GET_MONTH(src.ptr()) - 1;
cal.tm_year = PyDateTime_GET_YEAR(src.ptr()) - 1900;
cal.tm_isdst = -1;
msecs = microseconds(0);
} else if (PyTime_Check(src.ptr())) {
cal.tm_sec = PyDateTime_TIME_GET_SECOND(src.ptr());
cal.tm_min = PyDateTime_TIME_GET_MINUTE(src.ptr());
cal.tm_hour = PyDateTime_TIME_GET_HOUR(src.ptr());
cal.tm_mday = 1; // This date (day, month, year) = (1, 0, 70)
cal.tm_mon = 0; // represents 1-Jan-1970, which is the first
cal.tm_year = 70; // earliest available date for Python's datetime
cal.tm_isdst = -1;
msecs = microseconds(PyDateTime_TIME_GET_MICROSECOND(src.ptr()));
} else {
return false;
}
value = time_point_cast<Duration>(system_clock::from_time_t(std::mktime(&cal)) + msecs);
return true;
}
static handle cast(const std::chrono::time_point<std::chrono::system_clock, Duration> &src,
return_value_policy /* policy */,
handle /* parent */) {
using namespace std::chrono;
// Lazy initialise the PyDateTime import
if (!PyDateTimeAPI) {
PyDateTime_IMPORT;
}
// Get out microseconds, and make sure they are positive, to avoid bug in eastern
// hemisphere time zones (cfr. https://github.com/pybind/pybind11/issues/2417)
using us_t = duration<int, std::micro>;
auto us = duration_cast<us_t>(src.time_since_epoch() % seconds(1));
if (us.count() < 0) {
us += seconds(1);
}
// Subtract microseconds BEFORE `system_clock::to_time_t`, because:
// > If std::time_t has lower precision, it is implementation-defined whether the value is
// rounded or truncated. (https://en.cppreference.com/w/cpp/chrono/system_clock/to_time_t)
std::time_t tt
= system_clock::to_time_t(time_point_cast<system_clock::duration>(src - us));
std::tm localtime;
std::tm *localtime_ptr = localtime_thread_safe(&tt, &localtime);
if (!localtime_ptr) {
throw cast_error("Unable to represent system_clock in local time");
}
return PyDateTime_FromDateAndTime(localtime.tm_year + 1900,
localtime.tm_mon + 1,
localtime.tm_mday,
localtime.tm_hour,
localtime.tm_min,
localtime.tm_sec,
us.count());
}
PYBIND11_TYPE_CASTER(type, const_name("datetime.datetime"));
};
// Other clocks that are not the system clock are not measured as datetime.datetime objects
// since they are not measured on calendar time. So instead we just make them timedeltas
// Or if they have passed us a time as a float we convert that
template <typename Clock, typename Duration>
class type_caster<std::chrono::time_point<Clock, Duration>>
: public duration_caster<std::chrono::time_point<Clock, Duration>> {};
template <typename Rep, typename Period>
class type_caster<std::chrono::duration<Rep, Period>>
: public duration_caster<std::chrono::duration<Rep, Period>> {};
PYBIND11_NAMESPACE_END(detail)
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)

View File

@ -1,2 +0,0 @@
#include "detail/common.h"
#warning "Including 'common.h' is deprecated. It will be removed in v3.0. Use 'pybind11.h'."

View File

@ -1,74 +0,0 @@
/*
pybind11/complex.h: Complex number support
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "pybind11.h"
#include <complex>
/// glibc defines I as a macro which breaks things, e.g., boost template names
#ifdef I
# undef I
#endif
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
template <typename T>
struct format_descriptor<std::complex<T>, detail::enable_if_t<std::is_floating_point<T>::value>> {
static constexpr const char c = format_descriptor<T>::c;
static constexpr const char value[3] = {'Z', c, '\0'};
static std::string format() { return std::string(value); }
};
#ifndef PYBIND11_CPP17
template <typename T>
constexpr const char
format_descriptor<std::complex<T>,
detail::enable_if_t<std::is_floating_point<T>::value>>::value[3];
#endif
PYBIND11_NAMESPACE_BEGIN(detail)
template <typename T>
struct is_fmt_numeric<std::complex<T>, detail::enable_if_t<std::is_floating_point<T>::value>> {
static constexpr bool value = true;
static constexpr int index = is_fmt_numeric<T>::index + 3;
};
template <typename T>
class type_caster<std::complex<T>> {
public:
bool load(handle src, bool convert) {
if (!src) {
return false;
}
if (!convert && !PyComplex_Check(src.ptr())) {
return false;
}
Py_complex result = PyComplex_AsCComplex(src.ptr());
if (result.real == -1.0 && PyErr_Occurred()) {
PyErr_Clear();
return false;
}
value = std::complex<T>((T) result.real, (T) result.imag);
return true;
}
static handle
cast(const std::complex<T> &src, return_value_policy /* policy */, handle /* parent */) {
return PyComplex_FromDoubles((double) src.real(), (double) src.imag());
}
PYBIND11_TYPE_CASTER(std::complex<T>, const_name("complex"));
};
PYBIND11_NAMESPACE_END(detail)
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)

View File

@ -1,743 +0,0 @@
/*
pybind11/detail/class.h: Python C API implementation details for py::class_
Copyright (c) 2017 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "../attr.h"
#include "../options.h"
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
PYBIND11_NAMESPACE_BEGIN(detail)
#if !defined(PYPY_VERSION)
# define PYBIND11_BUILTIN_QUALNAME
# define PYBIND11_SET_OLDPY_QUALNAME(obj, nameobj)
#else
// In PyPy, we still set __qualname__ so that we can produce reliable function type
// signatures; in CPython this macro expands to nothing:
# define PYBIND11_SET_OLDPY_QUALNAME(obj, nameobj) \
setattr((PyObject *) obj, "__qualname__", nameobj)
#endif
inline std::string get_fully_qualified_tp_name(PyTypeObject *type) {
#if !defined(PYPY_VERSION)
return type->tp_name;
#else
auto module_name = handle((PyObject *) type).attr("__module__").cast<std::string>();
if (module_name == PYBIND11_BUILTINS_MODULE)
return type->tp_name;
else
return std::move(module_name) + "." + type->tp_name;
#endif
}
inline PyTypeObject *type_incref(PyTypeObject *type) {
Py_INCREF(type);
return type;
}
#if !defined(PYPY_VERSION)
/// `pybind11_static_property.__get__()`: Always pass the class instead of the instance.
extern "C" inline PyObject *pybind11_static_get(PyObject *self, PyObject * /*ob*/, PyObject *cls) {
return PyProperty_Type.tp_descr_get(self, cls, cls);
}
/// `pybind11_static_property.__set__()`: Just like the above `__get__()`.
extern "C" inline int pybind11_static_set(PyObject *self, PyObject *obj, PyObject *value) {
PyObject *cls = PyType_Check(obj) ? obj : (PyObject *) Py_TYPE(obj);
return PyProperty_Type.tp_descr_set(self, cls, value);
}
// Forward declaration to use in `make_static_property_type()`
inline void enable_dynamic_attributes(PyHeapTypeObject *heap_type);
/** A `static_property` is the same as a `property` but the `__get__()` and `__set__()`
methods are modified to always use the object type instead of a concrete instance.
Return value: New reference. */
inline PyTypeObject *make_static_property_type() {
constexpr auto *name = "pybind11_static_property";
auto name_obj = reinterpret_steal<object>(PYBIND11_FROM_STRING(name));
/* Danger zone: from now (and until PyType_Ready), make sure to
issue no Python C API calls which could potentially invoke the
garbage collector (the GC will call type_traverse(), which will in
turn find the newly constructed type in an invalid state) */
auto *heap_type = (PyHeapTypeObject *) PyType_Type.tp_alloc(&PyType_Type, 0);
if (!heap_type) {
pybind11_fail("make_static_property_type(): error allocating type!");
}
heap_type->ht_name = name_obj.inc_ref().ptr();
# ifdef PYBIND11_BUILTIN_QUALNAME
heap_type->ht_qualname = name_obj.inc_ref().ptr();
# endif
auto *type = &heap_type->ht_type;
type->tp_name = name;
type->tp_base = type_incref(&PyProperty_Type);
type->tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
type->tp_descr_get = pybind11_static_get;
type->tp_descr_set = pybind11_static_set;
if (PyType_Ready(type) < 0) {
pybind11_fail("make_static_property_type(): failure in PyType_Ready()!");
}
# if PY_VERSION_HEX >= 0x030C0000
// PRE 3.12 FEATURE FREEZE. PLEASE REVIEW AFTER FREEZE.
// Since Python-3.12 property-derived types are required to
// have dynamic attributes (to set `__doc__`)
enable_dynamic_attributes(heap_type);
# endif
setattr((PyObject *) type, "__module__", str("pybind11_builtins"));
PYBIND11_SET_OLDPY_QUALNAME(type, name_obj);
return type;
}
#else // PYPY
/** PyPy has some issues with the above C API, so we evaluate Python code instead.
This function will only be called once so performance isn't really a concern.
Return value: New reference. */
inline PyTypeObject *make_static_property_type() {
auto d = dict();
PyObject *result = PyRun_String(R"(\
class pybind11_static_property(property):
def __get__(self, obj, cls):
return property.__get__(self, cls, cls)
def __set__(self, obj, value):
cls = obj if isinstance(obj, type) else type(obj)
property.__set__(self, cls, value)
)",
Py_file_input,
d.ptr(),
d.ptr());
if (result == nullptr)
throw error_already_set();
Py_DECREF(result);
return (PyTypeObject *) d["pybind11_static_property"].cast<object>().release().ptr();
}
#endif // PYPY
/** Types with static properties need to handle `Type.static_prop = x` in a specific way.
By default, Python replaces the `static_property` itself, but for wrapped C++ types
we need to call `static_property.__set__()` in order to propagate the new value to
the underlying C++ data structure. */
extern "C" inline int pybind11_meta_setattro(PyObject *obj, PyObject *name, PyObject *value) {
// Use `_PyType_Lookup()` instead of `PyObject_GetAttr()` in order to get the raw
// descriptor (`property`) instead of calling `tp_descr_get` (`property.__get__()`).
PyObject *descr = _PyType_Lookup((PyTypeObject *) obj, name);
// The following assignment combinations are possible:
// 1. `Type.static_prop = value` --> descr_set: `Type.static_prop.__set__(value)`
// 2. `Type.static_prop = other_static_prop` --> setattro: replace existing `static_prop`
// 3. `Type.regular_attribute = value` --> setattro: regular attribute assignment
auto *const static_prop = (PyObject *) get_internals().static_property_type;
const auto call_descr_set = (descr != nullptr) && (value != nullptr)
&& (PyObject_IsInstance(descr, static_prop) != 0)
&& (PyObject_IsInstance(value, static_prop) == 0);
if (call_descr_set) {
// Call `static_property.__set__()` instead of replacing the `static_property`.
#if !defined(PYPY_VERSION)
return Py_TYPE(descr)->tp_descr_set(descr, obj, value);
#else
if (PyObject *result = PyObject_CallMethod(descr, "__set__", "OO", obj, value)) {
Py_DECREF(result);
return 0;
} else {
return -1;
}
#endif
} else {
// Replace existing attribute.
return PyType_Type.tp_setattro(obj, name, value);
}
}
/**
* Python 3's PyInstanceMethod_Type hides itself via its tp_descr_get, which prevents aliasing
* methods via cls.attr("m2") = cls.attr("m1"): instead the tp_descr_get returns a plain function,
* when called on a class, or a PyMethod, when called on an instance. Override that behaviour here
* to do a special case bypass for PyInstanceMethod_Types.
*/
extern "C" inline PyObject *pybind11_meta_getattro(PyObject *obj, PyObject *name) {
PyObject *descr = _PyType_Lookup((PyTypeObject *) obj, name);
if (descr && PyInstanceMethod_Check(descr)) {
Py_INCREF(descr);
return descr;
}
return PyType_Type.tp_getattro(obj, name);
}
/// metaclass `__call__` function that is used to create all pybind11 objects.
extern "C" inline PyObject *pybind11_meta_call(PyObject *type, PyObject *args, PyObject *kwargs) {
// use the default metaclass call to create/initialize the object
PyObject *self = PyType_Type.tp_call(type, args, kwargs);
if (self == nullptr) {
return nullptr;
}
// This must be a pybind11 instance
auto *instance = reinterpret_cast<detail::instance *>(self);
// Ensure that the base __init__ function(s) were called
for (const auto &vh : values_and_holders(instance)) {
if (!vh.holder_constructed()) {
PyErr_Format(PyExc_TypeError,
"%.200s.__init__() must be called when overriding __init__",
get_fully_qualified_tp_name(vh.type->type).c_str());
Py_DECREF(self);
return nullptr;
}
}
return self;
}
/// Cleanup the type-info for a pybind11-registered type.
extern "C" inline void pybind11_meta_dealloc(PyObject *obj) {
auto *type = (PyTypeObject *) obj;
auto &internals = get_internals();
// A pybind11-registered type will:
// 1) be found in internals.registered_types_py
// 2) have exactly one associated `detail::type_info`
auto found_type = internals.registered_types_py.find(type);
if (found_type != internals.registered_types_py.end() && found_type->second.size() == 1
&& found_type->second[0]->type == type) {
auto *tinfo = found_type->second[0];
auto tindex = std::type_index(*tinfo->cpptype);
internals.direct_conversions.erase(tindex);
if (tinfo->module_local) {
get_local_internals().registered_types_cpp.erase(tindex);
} else {
internals.registered_types_cpp.erase(tindex);
}
internals.registered_types_py.erase(tinfo->type);
// Actually just `std::erase_if`, but that's only available in C++20
auto &cache = internals.inactive_override_cache;
for (auto it = cache.begin(), last = cache.end(); it != last;) {
if (it->first == (PyObject *) tinfo->type) {
it = cache.erase(it);
} else {
++it;
}
}
delete tinfo;
}
PyType_Type.tp_dealloc(obj);
}
/** This metaclass is assigned by default to all pybind11 types and is required in order
for static properties to function correctly. Users may override this using `py::metaclass`.
Return value: New reference. */
inline PyTypeObject *make_default_metaclass() {
constexpr auto *name = "pybind11_type";
auto name_obj = reinterpret_steal<object>(PYBIND11_FROM_STRING(name));
/* Danger zone: from now (and until PyType_Ready), make sure to
issue no Python C API calls which could potentially invoke the
garbage collector (the GC will call type_traverse(), which will in
turn find the newly constructed type in an invalid state) */
auto *heap_type = (PyHeapTypeObject *) PyType_Type.tp_alloc(&PyType_Type, 0);
if (!heap_type) {
pybind11_fail("make_default_metaclass(): error allocating metaclass!");
}
heap_type->ht_name = name_obj.inc_ref().ptr();
#ifdef PYBIND11_BUILTIN_QUALNAME
heap_type->ht_qualname = name_obj.inc_ref().ptr();
#endif
auto *type = &heap_type->ht_type;
type->tp_name = name;
type->tp_base = type_incref(&PyType_Type);
type->tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
type->tp_call = pybind11_meta_call;
type->tp_setattro = pybind11_meta_setattro;
type->tp_getattro = pybind11_meta_getattro;
type->tp_dealloc = pybind11_meta_dealloc;
if (PyType_Ready(type) < 0) {
pybind11_fail("make_default_metaclass(): failure in PyType_Ready()!");
}
setattr((PyObject *) type, "__module__", str("pybind11_builtins"));
PYBIND11_SET_OLDPY_QUALNAME(type, name_obj);
return type;
}
/// For multiple inheritance types we need to recursively register/deregister base pointers for any
/// base classes with pointers that are difference from the instance value pointer so that we can
/// correctly recognize an offset base class pointer. This calls a function with any offset base
/// ptrs.
inline void traverse_offset_bases(void *valueptr,
const detail::type_info *tinfo,
instance *self,
bool (*f)(void * /*parentptr*/, instance * /*self*/)) {
for (handle h : reinterpret_borrow<tuple>(tinfo->type->tp_bases)) {
if (auto *parent_tinfo = get_type_info((PyTypeObject *) h.ptr())) {
for (auto &c : parent_tinfo->implicit_casts) {
if (c.first == tinfo->cpptype) {
auto *parentptr = c.second(valueptr);
if (parentptr != valueptr) {
f(parentptr, self);
}
traverse_offset_bases(parentptr, parent_tinfo, self, f);
break;
}
}
}
}
}
inline bool register_instance_impl(void *ptr, instance *self) {
get_internals().registered_instances.emplace(ptr, self);
return true; // unused, but gives the same signature as the deregister func
}
inline bool deregister_instance_impl(void *ptr, instance *self) {
auto &registered_instances = get_internals().registered_instances;
auto range = registered_instances.equal_range(ptr);
for (auto it = range.first; it != range.second; ++it) {
if (self == it->second) {
registered_instances.erase(it);
return true;
}
}
return false;
}
inline void register_instance(instance *self, void *valptr, const type_info *tinfo) {
register_instance_impl(valptr, self);
if (!tinfo->simple_ancestors) {
traverse_offset_bases(valptr, tinfo, self, register_instance_impl);
}
}
inline bool deregister_instance(instance *self, void *valptr, const type_info *tinfo) {
bool ret = deregister_instance_impl(valptr, self);
if (!tinfo->simple_ancestors) {
traverse_offset_bases(valptr, tinfo, self, deregister_instance_impl);
}
return ret;
}
/// Instance creation function for all pybind11 types. It allocates the internal instance layout
/// for holding C++ objects and holders. Allocation is done lazily (the first time the instance is
/// cast to a reference or pointer), and initialization is done by an `__init__` function.
inline PyObject *make_new_instance(PyTypeObject *type) {
#if defined(PYPY_VERSION)
// PyPy gets tp_basicsize wrong (issue 2482) under multiple inheritance when the first
// inherited object is a plain Python type (i.e. not derived from an extension type). Fix it.
ssize_t instance_size = static_cast<ssize_t>(sizeof(instance));
if (type->tp_basicsize < instance_size) {
type->tp_basicsize = instance_size;
}
#endif
PyObject *self = type->tp_alloc(type, 0);
auto *inst = reinterpret_cast<instance *>(self);
// Allocate the value/holder internals:
inst->allocate_layout();
return self;
}
/// Instance creation function for all pybind11 types. It only allocates space for the
/// C++ object, but doesn't call the constructor -- an `__init__` function must do that.
extern "C" inline PyObject *pybind11_object_new(PyTypeObject *type, PyObject *, PyObject *) {
return make_new_instance(type);
}
/// An `__init__` function constructs the C++ object. Users should provide at least one
/// of these using `py::init` or directly with `.def(__init__, ...)`. Otherwise, the
/// following default function will be used which simply throws an exception.
extern "C" inline int pybind11_object_init(PyObject *self, PyObject *, PyObject *) {
PyTypeObject *type = Py_TYPE(self);
std::string msg = get_fully_qualified_tp_name(type) + ": No constructor defined!";
PyErr_SetString(PyExc_TypeError, msg.c_str());
return -1;
}
inline void add_patient(PyObject *nurse, PyObject *patient) {
auto &internals = get_internals();
auto *instance = reinterpret_cast<detail::instance *>(nurse);
instance->has_patients = true;
Py_INCREF(patient);
internals.patients[nurse].push_back(patient);
}
inline void clear_patients(PyObject *self) {
auto *instance = reinterpret_cast<detail::instance *>(self);
auto &internals = get_internals();
auto pos = internals.patients.find(self);
assert(pos != internals.patients.end());
// Clearing the patients can cause more Python code to run, which
// can invalidate the iterator. Extract the vector of patients
// from the unordered_map first.
auto patients = std::move(pos->second);
internals.patients.erase(pos);
instance->has_patients = false;
for (PyObject *&patient : patients) {
Py_CLEAR(patient);
}
}
/// Clears all internal data from the instance and removes it from registered instances in
/// preparation for deallocation.
inline void clear_instance(PyObject *self) {
auto *instance = reinterpret_cast<detail::instance *>(self);
// Deallocate any values/holders, if present:
for (auto &v_h : values_and_holders(instance)) {
if (v_h) {
// We have to deregister before we call dealloc because, for virtual MI types, we still
// need to be able to get the parent pointers.
if (v_h.instance_registered()
&& !deregister_instance(instance, v_h.value_ptr(), v_h.type)) {
pybind11_fail(
"pybind11_object_dealloc(): Tried to deallocate unregistered instance!");
}
if (instance->owned || v_h.holder_constructed()) {
v_h.type->dealloc(v_h);
}
}
}
// Deallocate the value/holder layout internals:
instance->deallocate_layout();
if (instance->weakrefs) {
PyObject_ClearWeakRefs(self);
}
PyObject **dict_ptr = _PyObject_GetDictPtr(self);
if (dict_ptr) {
Py_CLEAR(*dict_ptr);
}
if (instance->has_patients) {
clear_patients(self);
}
}
/// Instance destructor function for all pybind11 types. It calls `type_info.dealloc`
/// to destroy the C++ object itself, while the rest is Python bookkeeping.
extern "C" inline void pybind11_object_dealloc(PyObject *self) {
auto *type = Py_TYPE(self);
// If this is a GC tracked object, untrack it first
// Note that the track call is implicitly done by the
// default tp_alloc, which we never override.
if (PyType_HasFeature(type, Py_TPFLAGS_HAVE_GC) != 0) {
PyObject_GC_UnTrack(self);
}
clear_instance(self);
type->tp_free(self);
#if PY_VERSION_HEX < 0x03080000
// `type->tp_dealloc != pybind11_object_dealloc` means that we're being called
// as part of a derived type's dealloc, in which case we're not allowed to decref
// the type here. For cross-module compatibility, we shouldn't compare directly
// with `pybind11_object_dealloc`, but with the common one stashed in internals.
auto pybind11_object_type = (PyTypeObject *) get_internals().instance_base;
if (type->tp_dealloc == pybind11_object_type->tp_dealloc)
Py_DECREF(type);
#else
// This was not needed before Python 3.8 (Python issue 35810)
// https://github.com/pybind/pybind11/issues/1946
Py_DECREF(type);
#endif
}
std::string error_string();
/** Create the type which can be used as a common base for all classes. This is
needed in order to satisfy Python's requirements for multiple inheritance.
Return value: New reference. */
inline PyObject *make_object_base_type(PyTypeObject *metaclass) {
constexpr auto *name = "pybind11_object";
auto name_obj = reinterpret_steal<object>(PYBIND11_FROM_STRING(name));
/* Danger zone: from now (and until PyType_Ready), make sure to
issue no Python C API calls which could potentially invoke the
garbage collector (the GC will call type_traverse(), which will in
turn find the newly constructed type in an invalid state) */
auto *heap_type = (PyHeapTypeObject *) metaclass->tp_alloc(metaclass, 0);
if (!heap_type) {
pybind11_fail("make_object_base_type(): error allocating type!");
}
heap_type->ht_name = name_obj.inc_ref().ptr();
#ifdef PYBIND11_BUILTIN_QUALNAME
heap_type->ht_qualname = name_obj.inc_ref().ptr();
#endif
auto *type = &heap_type->ht_type;
type->tp_name = name;
type->tp_base = type_incref(&PyBaseObject_Type);
type->tp_basicsize = static_cast<ssize_t>(sizeof(instance));
type->tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE;
type->tp_new = pybind11_object_new;
type->tp_init = pybind11_object_init;
type->tp_dealloc = pybind11_object_dealloc;
/* Support weak references (needed for the keep_alive feature) */
type->tp_weaklistoffset = offsetof(instance, weakrefs);
if (PyType_Ready(type) < 0) {
pybind11_fail("PyType_Ready failed in make_object_base_type(): " + error_string());
}
setattr((PyObject *) type, "__module__", str("pybind11_builtins"));
PYBIND11_SET_OLDPY_QUALNAME(type, name_obj);
assert(!PyType_HasFeature(type, Py_TPFLAGS_HAVE_GC));
return (PyObject *) heap_type;
}
/// dynamic_attr: Allow the garbage collector to traverse the internal instance `__dict__`.
extern "C" inline int pybind11_traverse(PyObject *self, visitproc visit, void *arg) {
PyObject *&dict = *_PyObject_GetDictPtr(self);
Py_VISIT(dict);
// https://docs.python.org/3/c-api/typeobj.html#c.PyTypeObject.tp_traverse
#if PY_VERSION_HEX >= 0x03090000
Py_VISIT(Py_TYPE(self));
#endif
return 0;
}
/// dynamic_attr: Allow the GC to clear the dictionary.
extern "C" inline int pybind11_clear(PyObject *self) {
PyObject *&dict = *_PyObject_GetDictPtr(self);
Py_CLEAR(dict);
return 0;
}
/// Give instances of this type a `__dict__` and opt into garbage collection.
inline void enable_dynamic_attributes(PyHeapTypeObject *heap_type) {
auto *type = &heap_type->ht_type;
type->tp_flags |= Py_TPFLAGS_HAVE_GC;
#if PY_VERSION_HEX < 0x030B0000
type->tp_dictoffset = type->tp_basicsize; // place dict at the end
type->tp_basicsize += (ssize_t) sizeof(PyObject *); // and allocate enough space for it
#else
type->tp_flags |= Py_TPFLAGS_MANAGED_DICT;
#endif
type->tp_traverse = pybind11_traverse;
type->tp_clear = pybind11_clear;
static PyGetSetDef getset[] = {{
#if PY_VERSION_HEX < 0x03070000
const_cast<char *>("__dict__"),
#else
"__dict__",
#endif
PyObject_GenericGetDict,
PyObject_GenericSetDict,
nullptr,
nullptr},
{nullptr, nullptr, nullptr, nullptr, nullptr}};
type->tp_getset = getset;
}
/// buffer_protocol: Fill in the view as specified by flags.
extern "C" inline int pybind11_getbuffer(PyObject *obj, Py_buffer *view, int flags) {
// Look for a `get_buffer` implementation in this type's info or any bases (following MRO).
type_info *tinfo = nullptr;
for (auto type : reinterpret_borrow<tuple>(Py_TYPE(obj)->tp_mro)) {
tinfo = get_type_info((PyTypeObject *) type.ptr());
if (tinfo && tinfo->get_buffer) {
break;
}
}
if (view == nullptr || !tinfo || !tinfo->get_buffer) {
if (view) {
view->obj = nullptr;
}
PyErr_SetString(PyExc_BufferError, "pybind11_getbuffer(): Internal error");
return -1;
}
std::memset(view, 0, sizeof(Py_buffer));
buffer_info *info = tinfo->get_buffer(obj, tinfo->get_buffer_data);
if ((flags & PyBUF_WRITABLE) == PyBUF_WRITABLE && info->readonly) {
delete info;
// view->obj = nullptr; // Was just memset to 0, so not necessary
PyErr_SetString(PyExc_BufferError, "Writable buffer requested for readonly storage");
return -1;
}
view->obj = obj;
view->ndim = 1;
view->internal = info;
view->buf = info->ptr;
view->itemsize = info->itemsize;
view->len = view->itemsize;
for (auto s : info->shape) {
view->len *= s;
}
view->readonly = static_cast<int>(info->readonly);
if ((flags & PyBUF_FORMAT) == PyBUF_FORMAT) {
view->format = const_cast<char *>(info->format.c_str());
}
if ((flags & PyBUF_STRIDES) == PyBUF_STRIDES) {
view->ndim = (int) info->ndim;
view->strides = info->strides.data();
view->shape = info->shape.data();
}
Py_INCREF(view->obj);
return 0;
}
/// buffer_protocol: Release the resources of the buffer.
extern "C" inline void pybind11_releasebuffer(PyObject *, Py_buffer *view) {
delete (buffer_info *) view->internal;
}
/// Give this type a buffer interface.
inline void enable_buffer_protocol(PyHeapTypeObject *heap_type) {
heap_type->ht_type.tp_as_buffer = &heap_type->as_buffer;
heap_type->as_buffer.bf_getbuffer = pybind11_getbuffer;
heap_type->as_buffer.bf_releasebuffer = pybind11_releasebuffer;
}
/** Create a brand new Python type according to the `type_record` specification.
Return value: New reference. */
inline PyObject *make_new_python_type(const type_record &rec) {
auto name = reinterpret_steal<object>(PYBIND11_FROM_STRING(rec.name));
auto qualname = name;
if (rec.scope && !PyModule_Check(rec.scope.ptr()) && hasattr(rec.scope, "__qualname__")) {
qualname = reinterpret_steal<object>(
PyUnicode_FromFormat("%U.%U", rec.scope.attr("__qualname__").ptr(), name.ptr()));
}
object module_;
if (rec.scope) {
if (hasattr(rec.scope, "__module__")) {
module_ = rec.scope.attr("__module__");
} else if (hasattr(rec.scope, "__name__")) {
module_ = rec.scope.attr("__name__");
}
}
const auto *full_name = c_str(
#if !defined(PYPY_VERSION)
module_ ? str(module_).cast<std::string>() + "." + rec.name :
#endif
rec.name);
char *tp_doc = nullptr;
if (rec.doc && options::show_user_defined_docstrings()) {
/* Allocate memory for docstring (using PyObject_MALLOC, since
Python will free this later on) */
size_t size = std::strlen(rec.doc) + 1;
tp_doc = (char *) PyObject_MALLOC(size);
std::memcpy((void *) tp_doc, rec.doc, size);
}
auto &internals = get_internals();
auto bases = tuple(rec.bases);
auto *base = (bases.empty()) ? internals.instance_base : bases[0].ptr();
/* Danger zone: from now (and until PyType_Ready), make sure to
issue no Python C API calls which could potentially invoke the
garbage collector (the GC will call type_traverse(), which will in
turn find the newly constructed type in an invalid state) */
auto *metaclass
= rec.metaclass.ptr() ? (PyTypeObject *) rec.metaclass.ptr() : internals.default_metaclass;
auto *heap_type = (PyHeapTypeObject *) metaclass->tp_alloc(metaclass, 0);
if (!heap_type) {
pybind11_fail(std::string(rec.name) + ": Unable to create type object!");
}
heap_type->ht_name = name.release().ptr();
#ifdef PYBIND11_BUILTIN_QUALNAME
heap_type->ht_qualname = qualname.inc_ref().ptr();
#endif
auto *type = &heap_type->ht_type;
type->tp_name = full_name;
type->tp_doc = tp_doc;
type->tp_base = type_incref((PyTypeObject *) base);
type->tp_basicsize = static_cast<ssize_t>(sizeof(instance));
if (!bases.empty()) {
type->tp_bases = bases.release().ptr();
}
/* Don't inherit base __init__ */
type->tp_init = pybind11_object_init;
/* Supported protocols */
type->tp_as_number = &heap_type->as_number;
type->tp_as_sequence = &heap_type->as_sequence;
type->tp_as_mapping = &heap_type->as_mapping;
type->tp_as_async = &heap_type->as_async;
/* Flags */
type->tp_flags |= Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HEAPTYPE;
if (!rec.is_final) {
type->tp_flags |= Py_TPFLAGS_BASETYPE;
}
if (rec.dynamic_attr) {
enable_dynamic_attributes(heap_type);
}
if (rec.buffer_protocol) {
enable_buffer_protocol(heap_type);
}
if (rec.custom_type_setup_callback) {
rec.custom_type_setup_callback(heap_type);
}
if (PyType_Ready(type) < 0) {
pybind11_fail(std::string(rec.name) + ": PyType_Ready failed: " + error_string());
}
assert(!rec.dynamic_attr || PyType_HasFeature(type, Py_TPFLAGS_HAVE_GC));
/* Register type with the parent scope */
if (rec.scope) {
setattr(rec.scope, rec.name, (PyObject *) type);
} else {
Py_INCREF(type); // Keep it alive forever (reference leak)
}
if (module_) { // Needed by pydoc
setattr((PyObject *) type, "__module__", module_);
}
PYBIND11_SET_OLDPY_QUALNAME(type, qualname);
return (PyObject *) type;
}
PYBIND11_NAMESPACE_END(detail)
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)

File diff suppressed because it is too large Load Diff

View File

@ -1,171 +0,0 @@
/*
pybind11/detail/descr.h: Helper type for concatenating type signatures at compile time
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "common.h"
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
PYBIND11_NAMESPACE_BEGIN(detail)
#if !defined(_MSC_VER)
# define PYBIND11_DESCR_CONSTEXPR static constexpr
#else
# define PYBIND11_DESCR_CONSTEXPR const
#endif
/* Concatenate type signatures at compile time */
template <size_t N, typename... Ts>
struct descr {
char text[N + 1]{'\0'};
constexpr descr() = default;
// NOLINTNEXTLINE(google-explicit-constructor)
constexpr descr(char const (&s)[N + 1]) : descr(s, make_index_sequence<N>()) {}
template <size_t... Is>
constexpr descr(char const (&s)[N + 1], index_sequence<Is...>) : text{s[Is]..., '\0'} {}
template <typename... Chars>
// NOLINTNEXTLINE(google-explicit-constructor)
constexpr descr(char c, Chars... cs) : text{c, static_cast<char>(cs)..., '\0'} {}
static constexpr std::array<const std::type_info *, sizeof...(Ts) + 1> types() {
return {{&typeid(Ts)..., nullptr}};
}
};
template <size_t N1, size_t N2, typename... Ts1, typename... Ts2, size_t... Is1, size_t... Is2>
constexpr descr<N1 + N2, Ts1..., Ts2...> plus_impl(const descr<N1, Ts1...> &a,
const descr<N2, Ts2...> &b,
index_sequence<Is1...>,
index_sequence<Is2...>) {
PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(b);
return {a.text[Is1]..., b.text[Is2]...};
}
template <size_t N1, size_t N2, typename... Ts1, typename... Ts2>
constexpr descr<N1 + N2, Ts1..., Ts2...> operator+(const descr<N1, Ts1...> &a,
const descr<N2, Ts2...> &b) {
return plus_impl(a, b, make_index_sequence<N1>(), make_index_sequence<N2>());
}
template <size_t N>
constexpr descr<N - 1> const_name(char const (&text)[N]) {
return descr<N - 1>(text);
}
constexpr descr<0> const_name(char const (&)[1]) { return {}; }
template <size_t Rem, size_t... Digits>
struct int_to_str : int_to_str<Rem / 10, Rem % 10, Digits...> {};
template <size_t... Digits>
struct int_to_str<0, Digits...> {
// WARNING: This only works with C++17 or higher.
static constexpr auto digits = descr<sizeof...(Digits)>(('0' + Digits)...);
};
// Ternary description (like std::conditional)
template <bool B, size_t N1, size_t N2>
constexpr enable_if_t<B, descr<N1 - 1>> const_name(char const (&text1)[N1], char const (&)[N2]) {
return const_name(text1);
}
template <bool B, size_t N1, size_t N2>
constexpr enable_if_t<!B, descr<N2 - 1>> const_name(char const (&)[N1], char const (&text2)[N2]) {
return const_name(text2);
}
template <bool B, typename T1, typename T2>
constexpr enable_if_t<B, T1> const_name(const T1 &d, const T2 &) {
return d;
}
template <bool B, typename T1, typename T2>
constexpr enable_if_t<!B, T2> const_name(const T1 &, const T2 &d) {
return d;
}
template <size_t Size>
auto constexpr const_name() -> remove_cv_t<decltype(int_to_str<Size / 10, Size % 10>::digits)> {
return int_to_str<Size / 10, Size % 10>::digits;
}
template <typename Type>
constexpr descr<1, Type> const_name() {
return {'%'};
}
// If "_" is defined as a macro, py::detail::_ cannot be provided.
// It is therefore best to use py::detail::const_name universally.
// This block is for backward compatibility only.
// (The const_name code is repeated to avoid introducing a "_" #define ourselves.)
#ifndef _
# define PYBIND11_DETAIL_UNDERSCORE_BACKWARD_COMPATIBILITY
template <size_t N>
constexpr descr<N - 1> _(char const (&text)[N]) {
return const_name<N>(text);
}
template <bool B, size_t N1, size_t N2>
constexpr enable_if_t<B, descr<N1 - 1>> _(char const (&text1)[N1], char const (&text2)[N2]) {
return const_name<B, N1, N2>(text1, text2);
}
template <bool B, size_t N1, size_t N2>
constexpr enable_if_t<!B, descr<N2 - 1>> _(char const (&text1)[N1], char const (&text2)[N2]) {
return const_name<B, N1, N2>(text1, text2);
}
template <bool B, typename T1, typename T2>
constexpr enable_if_t<B, T1> _(const T1 &d1, const T2 &d2) {
return const_name<B, T1, T2>(d1, d2);
}
template <bool B, typename T1, typename T2>
constexpr enable_if_t<!B, T2> _(const T1 &d1, const T2 &d2) {
return const_name<B, T1, T2>(d1, d2);
}
template <size_t Size>
auto constexpr _() -> remove_cv_t<decltype(int_to_str<Size / 10, Size % 10>::digits)> {
return const_name<Size>();
}
template <typename Type>
constexpr descr<1, Type> _() {
return const_name<Type>();
}
#endif // #ifndef _
constexpr descr<0> concat() { return {}; }
template <size_t N, typename... Ts>
constexpr descr<N, Ts...> concat(const descr<N, Ts...> &descr) {
return descr;
}
#ifdef __cpp_fold_expressions
template <size_t N1, size_t N2, typename... Ts1, typename... Ts2>
constexpr descr<N1 + N2 + 2, Ts1..., Ts2...> operator,(const descr<N1, Ts1...> &a,
const descr<N2, Ts2...> &b) {
return a + const_name(", ") + b;
}
template <size_t N, typename... Ts, typename... Args>
constexpr auto concat(const descr<N, Ts...> &d, const Args &...args) {
return (d, ..., args);
}
#else
template <size_t N, typename... Ts, typename... Args>
constexpr auto concat(const descr<N, Ts...> &d, const Args &...args)
-> decltype(std::declval<descr<N + 2, Ts...>>() + concat(args...)) {
return d + const_name(", ") + concat(args...);
}
#endif
template <size_t N, typename... Ts>
constexpr descr<N + 2, Ts...> type_descr(const descr<N, Ts...> &descr) {
return const_name("{") + descr + const_name("}");
}
PYBIND11_NAMESPACE_END(detail)
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)

View File

@ -1,434 +0,0 @@
/*
pybind11/detail/init.h: init factory function implementation and support code.
Copyright (c) 2017 Jason Rhinelander <jason@imaginary.ca>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "class.h"
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
PYBIND11_WARNING_DISABLE_MSVC(4127)
PYBIND11_NAMESPACE_BEGIN(detail)
template <>
class type_caster<value_and_holder> {
public:
bool load(handle h, bool) {
value = reinterpret_cast<value_and_holder *>(h.ptr());
return true;
}
template <typename>
using cast_op_type = value_and_holder &;
explicit operator value_and_holder &() { return *value; }
static constexpr auto name = const_name<value_and_holder>();
private:
value_and_holder *value = nullptr;
};
PYBIND11_NAMESPACE_BEGIN(initimpl)
inline void no_nullptr(void *ptr) {
if (!ptr) {
throw type_error("pybind11::init(): factory function returned nullptr");
}
}
// Implementing functions for all forms of py::init<...> and py::init(...)
template <typename Class>
using Cpp = typename Class::type;
template <typename Class>
using Alias = typename Class::type_alias;
template <typename Class>
using Holder = typename Class::holder_type;
template <typename Class>
using is_alias_constructible = std::is_constructible<Alias<Class>, Cpp<Class> &&>;
// Takes a Cpp pointer and returns true if it actually is a polymorphic Alias instance.
template <typename Class, enable_if_t<Class::has_alias, int> = 0>
bool is_alias(Cpp<Class> *ptr) {
return dynamic_cast<Alias<Class> *>(ptr) != nullptr;
}
// Failing fallback version of the above for a no-alias class (always returns false)
template <typename /*Class*/>
constexpr bool is_alias(void *) {
return false;
}
// Constructs and returns a new object; if the given arguments don't map to a constructor, we fall
// back to brace aggregate initiailization so that for aggregate initialization can be used with
// py::init, e.g. `py::init<int, int>` to initialize a `struct T { int a; int b; }`. For
// non-aggregate types, we need to use an ordinary T(...) constructor (invoking as `T{...}` usually
// works, but will not do the expected thing when `T` has an `initializer_list<T>` constructor).
template <typename Class,
typename... Args,
detail::enable_if_t<std::is_constructible<Class, Args...>::value, int> = 0>
inline Class *construct_or_initialize(Args &&...args) {
return new Class(std::forward<Args>(args)...);
}
template <typename Class,
typename... Args,
detail::enable_if_t<!std::is_constructible<Class, Args...>::value, int> = 0>
inline Class *construct_or_initialize(Args &&...args) {
return new Class{std::forward<Args>(args)...};
}
// Attempts to constructs an alias using a `Alias(Cpp &&)` constructor. This allows types with
// an alias to provide only a single Cpp factory function as long as the Alias can be
// constructed from an rvalue reference of the base Cpp type. This means that Alias classes
// can, when appropriate, simply define a `Alias(Cpp &&)` constructor rather than needing to
// inherit all the base class constructors.
template <typename Class>
void construct_alias_from_cpp(std::true_type /*is_alias_constructible*/,
value_and_holder &v_h,
Cpp<Class> &&base) {
v_h.value_ptr() = new Alias<Class>(std::move(base));
}
template <typename Class>
[[noreturn]] void construct_alias_from_cpp(std::false_type /*!is_alias_constructible*/,
value_and_holder &,
Cpp<Class> &&) {
throw type_error("pybind11::init(): unable to convert returned instance to required "
"alias class: no `Alias<Class>(Class &&)` constructor available");
}
// Error-generating fallback for factories that don't match one of the below construction
// mechanisms.
template <typename Class>
void construct(...) {
static_assert(!std::is_same<Class, Class>::value /* always false */,
"pybind11::init(): init function must return a compatible pointer, "
"holder, or value");
}
// Pointer return v1: the factory function returns a class pointer for a registered class.
// If we don't need an alias (because this class doesn't have one, or because the final type is
// inherited on the Python side) we can simply take over ownership. Otherwise we need to try to
// construct an Alias from the returned base instance.
template <typename Class>
void construct(value_and_holder &v_h, Cpp<Class> *ptr, bool need_alias) {
PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(need_alias);
no_nullptr(ptr);
if (Class::has_alias && need_alias && !is_alias<Class>(ptr)) {
// We're going to try to construct an alias by moving the cpp type. Whether or not
// that succeeds, we still need to destroy the original cpp pointer (either the
// moved away leftover, if the alias construction works, or the value itself if we
// throw an error), but we can't just call `delete ptr`: it might have a special
// deleter, or might be shared_from_this. So we construct a holder around it as if
// it was a normal instance, then steal the holder away into a local variable; thus
// the holder and destruction happens when we leave the C++ scope, and the holder
// class gets to handle the destruction however it likes.
v_h.value_ptr() = ptr;
v_h.set_instance_registered(true); // To prevent init_instance from registering it
v_h.type->init_instance(v_h.inst, nullptr); // Set up the holder
Holder<Class> temp_holder(std::move(v_h.holder<Holder<Class>>())); // Steal the holder
v_h.type->dealloc(v_h); // Destroys the moved-out holder remains, resets value ptr to null
v_h.set_instance_registered(false);
construct_alias_from_cpp<Class>(is_alias_constructible<Class>{}, v_h, std::move(*ptr));
} else {
// Otherwise the type isn't inherited, so we don't need an Alias
v_h.value_ptr() = ptr;
}
}
// Pointer return v2: a factory that always returns an alias instance ptr. We simply take over
// ownership of the pointer.
template <typename Class, enable_if_t<Class::has_alias, int> = 0>
void construct(value_and_holder &v_h, Alias<Class> *alias_ptr, bool) {
no_nullptr(alias_ptr);
v_h.value_ptr() = static_cast<Cpp<Class> *>(alias_ptr);
}
// Holder return: copy its pointer, and move or copy the returned holder into the new instance's
// holder. This also handles types like std::shared_ptr<T> and std::unique_ptr<T> where T is a
// derived type (through those holder's implicit conversion from derived class holder
// constructors).
template <typename Class>
void construct(value_and_holder &v_h, Holder<Class> holder, bool need_alias) {
PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(need_alias);
auto *ptr = holder_helper<Holder<Class>>::get(holder);
no_nullptr(ptr);
// If we need an alias, check that the held pointer is actually an alias instance
if (Class::has_alias && need_alias && !is_alias<Class>(ptr)) {
throw type_error("pybind11::init(): construction failed: returned holder-wrapped instance "
"is not an alias instance");
}
v_h.value_ptr() = ptr;
v_h.type->init_instance(v_h.inst, &holder);
}
// return-by-value version 1: returning a cpp class by value. If the class has an alias and an
// alias is required the alias must have an `Alias(Cpp &&)` constructor so that we can construct
// the alias from the base when needed (i.e. because of Python-side inheritance). When we don't
// need it, we simply move-construct the cpp value into a new instance.
template <typename Class>
void construct(value_and_holder &v_h, Cpp<Class> &&result, bool need_alias) {
PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(need_alias);
static_assert(is_move_constructible<Cpp<Class>>::value,
"pybind11::init() return-by-value factory function requires a movable class");
if (Class::has_alias && need_alias) {
construct_alias_from_cpp<Class>(is_alias_constructible<Class>{}, v_h, std::move(result));
} else {
v_h.value_ptr() = new Cpp<Class>(std::move(result));
}
}
// return-by-value version 2: returning a value of the alias type itself. We move-construct an
// Alias instance (even if no the python-side inheritance is involved). The is intended for
// cases where Alias initialization is always desired.
template <typename Class>
void construct(value_and_holder &v_h, Alias<Class> &&result, bool) {
static_assert(
is_move_constructible<Alias<Class>>::value,
"pybind11::init() return-by-alias-value factory function requires a movable alias class");
v_h.value_ptr() = new Alias<Class>(std::move(result));
}
// Implementing class for py::init<...>()
template <typename... Args>
struct constructor {
template <typename Class, typename... Extra, enable_if_t<!Class::has_alias, int> = 0>
static void execute(Class &cl, const Extra &...extra) {
cl.def(
"__init__",
[](value_and_holder &v_h, Args... args) {
v_h.value_ptr() = construct_or_initialize<Cpp<Class>>(std::forward<Args>(args)...);
},
is_new_style_constructor(),
extra...);
}
template <
typename Class,
typename... Extra,
enable_if_t<Class::has_alias && std::is_constructible<Cpp<Class>, Args...>::value, int>
= 0>
static void execute(Class &cl, const Extra &...extra) {
cl.def(
"__init__",
[](value_and_holder &v_h, Args... args) {
if (Py_TYPE(v_h.inst) == v_h.type->type) {
v_h.value_ptr()
= construct_or_initialize<Cpp<Class>>(std::forward<Args>(args)...);
} else {
v_h.value_ptr()
= construct_or_initialize<Alias<Class>>(std::forward<Args>(args)...);
}
},
is_new_style_constructor(),
extra...);
}
template <
typename Class,
typename... Extra,
enable_if_t<Class::has_alias && !std::is_constructible<Cpp<Class>, Args...>::value, int>
= 0>
static void execute(Class &cl, const Extra &...extra) {
cl.def(
"__init__",
[](value_and_holder &v_h, Args... args) {
v_h.value_ptr()
= construct_or_initialize<Alias<Class>>(std::forward<Args>(args)...);
},
is_new_style_constructor(),
extra...);
}
};
// Implementing class for py::init_alias<...>()
template <typename... Args>
struct alias_constructor {
template <
typename Class,
typename... Extra,
enable_if_t<Class::has_alias && std::is_constructible<Alias<Class>, Args...>::value, int>
= 0>
static void execute(Class &cl, const Extra &...extra) {
cl.def(
"__init__",
[](value_and_holder &v_h, Args... args) {
v_h.value_ptr()
= construct_or_initialize<Alias<Class>>(std::forward<Args>(args)...);
},
is_new_style_constructor(),
extra...);
}
};
// Implementation class for py::init(Func) and py::init(Func, AliasFunc)
template <typename CFunc,
typename AFunc = void_type (*)(),
typename = function_signature_t<CFunc>,
typename = function_signature_t<AFunc>>
struct factory;
// Specialization for py::init(Func)
template <typename Func, typename Return, typename... Args>
struct factory<Func, void_type (*)(), Return(Args...)> {
remove_reference_t<Func> class_factory;
// NOLINTNEXTLINE(google-explicit-constructor)
factory(Func &&f) : class_factory(std::forward<Func>(f)) {}
// The given class either has no alias or has no separate alias factory;
// this always constructs the class itself. If the class is registered with an alias
// type and an alias instance is needed (i.e. because the final type is a Python class
// inheriting from the C++ type) the returned value needs to either already be an alias
// instance, or the alias needs to be constructible from a `Class &&` argument.
template <typename Class, typename... Extra>
void execute(Class &cl, const Extra &...extra) && {
#if defined(PYBIND11_CPP14)
cl.def(
"__init__",
[func = std::move(class_factory)]
#else
auto &func = class_factory;
cl.def(
"__init__",
[func]
#endif
(value_and_holder &v_h, Args... args) {
construct<Class>(
v_h, func(std::forward<Args>(args)...), Py_TYPE(v_h.inst) != v_h.type->type);
},
is_new_style_constructor(),
extra...);
}
};
// Specialization for py::init(Func, AliasFunc)
template <typename CFunc,
typename AFunc,
typename CReturn,
typename... CArgs,
typename AReturn,
typename... AArgs>
struct factory<CFunc, AFunc, CReturn(CArgs...), AReturn(AArgs...)> {
static_assert(sizeof...(CArgs) == sizeof...(AArgs),
"pybind11::init(class_factory, alias_factory): class and alias factories "
"must have identical argument signatures");
static_assert(all_of<std::is_same<CArgs, AArgs>...>::value,
"pybind11::init(class_factory, alias_factory): class and alias factories "
"must have identical argument signatures");
remove_reference_t<CFunc> class_factory;
remove_reference_t<AFunc> alias_factory;
factory(CFunc &&c, AFunc &&a)
: class_factory(std::forward<CFunc>(c)), alias_factory(std::forward<AFunc>(a)) {}
// The class factory is called when the `self` type passed to `__init__` is the direct
// class (i.e. not inherited), the alias factory when `self` is a Python-side subtype.
template <typename Class, typename... Extra>
void execute(Class &cl, const Extra &...extra) && {
static_assert(Class::has_alias,
"The two-argument version of `py::init()` can "
"only be used if the class has an alias");
#if defined(PYBIND11_CPP14)
cl.def(
"__init__",
[class_func = std::move(class_factory), alias_func = std::move(alias_factory)]
#else
auto &class_func = class_factory;
auto &alias_func = alias_factory;
cl.def(
"__init__",
[class_func, alias_func]
#endif
(value_and_holder &v_h, CArgs... args) {
if (Py_TYPE(v_h.inst) == v_h.type->type) {
// If the instance type equals the registered type we don't have inheritance,
// so don't need the alias and can construct using the class function:
construct<Class>(v_h, class_func(std::forward<CArgs>(args)...), false);
} else {
construct<Class>(v_h, alias_func(std::forward<CArgs>(args)...), true);
}
},
is_new_style_constructor(),
extra...);
}
};
/// Set just the C++ state. Same as `__init__`.
template <typename Class, typename T>
void setstate(value_and_holder &v_h, T &&result, bool need_alias) {
construct<Class>(v_h, std::forward<T>(result), need_alias);
}
/// Set both the C++ and Python states
template <typename Class,
typename T,
typename O,
enable_if_t<std::is_convertible<O, handle>::value, int> = 0>
void setstate(value_and_holder &v_h, std::pair<T, O> &&result, bool need_alias) {
construct<Class>(v_h, std::move(result.first), need_alias);
auto d = handle(result.second);
if (PyDict_Check(d.ptr()) && PyDict_Size(d.ptr()) == 0) {
// Skipping setattr below, to not force use of py::dynamic_attr() for Class unnecessarily.
// See PR #2972 for details.
return;
}
setattr((PyObject *) v_h.inst, "__dict__", d);
}
/// Implementation for py::pickle(GetState, SetState)
template <typename Get,
typename Set,
typename = function_signature_t<Get>,
typename = function_signature_t<Set>>
struct pickle_factory;
template <typename Get,
typename Set,
typename RetState,
typename Self,
typename NewInstance,
typename ArgState>
struct pickle_factory<Get, Set, RetState(Self), NewInstance(ArgState)> {
static_assert(std::is_same<intrinsic_t<RetState>, intrinsic_t<ArgState>>::value,
"The type returned by `__getstate__` must be the same "
"as the argument accepted by `__setstate__`");
remove_reference_t<Get> get;
remove_reference_t<Set> set;
pickle_factory(Get get, Set set) : get(std::forward<Get>(get)), set(std::forward<Set>(set)) {}
template <typename Class, typename... Extra>
void execute(Class &cl, const Extra &...extra) && {
cl.def("__getstate__", std::move(get));
#if defined(PYBIND11_CPP14)
cl.def(
"__setstate__",
[func = std::move(set)]
#else
auto &func = set;
cl.def(
"__setstate__",
[func]
#endif
(value_and_holder &v_h, ArgState state) {
setstate<Class>(
v_h, func(std::forward<ArgState>(state)), Py_TYPE(v_h.inst) != v_h.type->type);
},
is_new_style_constructor(),
extra...);
}
};
PYBIND11_NAMESPACE_END(initimpl)
PYBIND11_NAMESPACE_END(detail)
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)

View File

@ -1,656 +0,0 @@
/*
pybind11/detail/internals.h: Internal data structure and related functions
Copyright (c) 2017 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "common.h"
#if defined(WITH_THREAD) && defined(PYBIND11_SIMPLE_GIL_MANAGEMENT)
# include "../gil.h"
#endif
#include "../pytypes.h"
#include <exception>
/// Tracks the `internals` and `type_info` ABI version independent of the main library version.
///
/// Some portions of the code use an ABI that is conditional depending on this
/// version number. That allows ABI-breaking changes to be "pre-implemented".
/// Once the default version number is incremented, the conditional logic that
/// no longer applies can be removed. Additionally, users that need not
/// maintain ABI compatibility can increase the version number in order to take
/// advantage of any functionality/efficiency improvements that depend on the
/// newer ABI.
///
/// WARNING: If you choose to manually increase the ABI version, note that
/// pybind11 may not be tested as thoroughly with a non-default ABI version, and
/// further ABI-incompatible changes may be made before the ABI is officially
/// changed to the new version.
#ifndef PYBIND11_INTERNALS_VERSION
# if PY_VERSION_HEX >= 0x030C0000
// Version bump for Python 3.12+, before first 3.12 beta release.
# define PYBIND11_INTERNALS_VERSION 5
# else
# define PYBIND11_INTERNALS_VERSION 4
# endif
#endif
// This requirement is mainly to reduce the support burden (see PR #4570).
static_assert(PY_VERSION_HEX < 0x030C0000 || PYBIND11_INTERNALS_VERSION >= 5,
"pybind11 ABI version 5 is the minimum for Python 3.12+");
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
using ExceptionTranslator = void (*)(std::exception_ptr);
PYBIND11_NAMESPACE_BEGIN(detail)
constexpr const char *internals_function_record_capsule_name = "pybind11_function_record_capsule";
// Forward declarations
inline PyTypeObject *make_static_property_type();
inline PyTypeObject *make_default_metaclass();
inline PyObject *make_object_base_type(PyTypeObject *metaclass);
// The old Python Thread Local Storage (TLS) API is deprecated in Python 3.7 in favor of the new
// Thread Specific Storage (TSS) API.
#if PY_VERSION_HEX >= 0x03070000
// Avoid unnecessary allocation of `Py_tss_t`, since we cannot use
// `Py_LIMITED_API` anyway.
# if PYBIND11_INTERNALS_VERSION > 4
# define PYBIND11_TLS_KEY_REF Py_tss_t &
# if defined(__GNUC__) && !defined(__INTEL_COMPILER)
// Clang on macOS warns due to `Py_tss_NEEDS_INIT` not specifying an initializer
// for every field.
# define PYBIND11_TLS_KEY_INIT(var) \
_Pragma("GCC diagnostic push") /**/ \
_Pragma("GCC diagnostic ignored \"-Wmissing-field-initializers\"") /**/ \
Py_tss_t var \
= Py_tss_NEEDS_INIT; \
_Pragma("GCC diagnostic pop")
# else
# define PYBIND11_TLS_KEY_INIT(var) Py_tss_t var = Py_tss_NEEDS_INIT;
# endif
# define PYBIND11_TLS_KEY_CREATE(var) (PyThread_tss_create(&(var)) == 0)
# define PYBIND11_TLS_GET_VALUE(key) PyThread_tss_get(&(key))
# define PYBIND11_TLS_REPLACE_VALUE(key, value) PyThread_tss_set(&(key), (value))
# define PYBIND11_TLS_DELETE_VALUE(key) PyThread_tss_set(&(key), nullptr)
# define PYBIND11_TLS_FREE(key) PyThread_tss_delete(&(key))
# else
# define PYBIND11_TLS_KEY_REF Py_tss_t *
# define PYBIND11_TLS_KEY_INIT(var) Py_tss_t *var = nullptr;
# define PYBIND11_TLS_KEY_CREATE(var) \
(((var) = PyThread_tss_alloc()) != nullptr && (PyThread_tss_create((var)) == 0))
# define PYBIND11_TLS_GET_VALUE(key) PyThread_tss_get((key))
# define PYBIND11_TLS_REPLACE_VALUE(key, value) PyThread_tss_set((key), (value))
# define PYBIND11_TLS_DELETE_VALUE(key) PyThread_tss_set((key), nullptr)
# define PYBIND11_TLS_FREE(key) PyThread_tss_free(key)
# endif
#else
// Usually an int but a long on Cygwin64 with Python 3.x
# define PYBIND11_TLS_KEY_REF decltype(PyThread_create_key())
# define PYBIND11_TLS_KEY_INIT(var) PYBIND11_TLS_KEY_REF var = 0;
# define PYBIND11_TLS_KEY_CREATE(var) (((var) = PyThread_create_key()) != -1)
# define PYBIND11_TLS_GET_VALUE(key) PyThread_get_key_value((key))
# if defined(PYPY_VERSION)
// On CPython < 3.4 and on PyPy, `PyThread_set_key_value` strangely does not set
// the value if it has already been set. Instead, it must first be deleted and
// then set again.
inline void tls_replace_value(PYBIND11_TLS_KEY_REF key, void *value) {
PyThread_delete_key_value(key);
PyThread_set_key_value(key, value);
}
# define PYBIND11_TLS_DELETE_VALUE(key) PyThread_delete_key_value(key)
# define PYBIND11_TLS_REPLACE_VALUE(key, value) \
::pybind11::detail::tls_replace_value((key), (value))
# else
# define PYBIND11_TLS_DELETE_VALUE(key) PyThread_set_key_value((key), nullptr)
# define PYBIND11_TLS_REPLACE_VALUE(key, value) PyThread_set_key_value((key), (value))
# endif
# define PYBIND11_TLS_FREE(key) (void) key
#endif
// Python loads modules by default with dlopen with the RTLD_LOCAL flag; under libc++ and possibly
// other STLs, this means `typeid(A)` from one module won't equal `typeid(A)` from another module
// even when `A` is the same, non-hidden-visibility type (e.g. from a common include). Under
// libstdc++, this doesn't happen: equality and the type_index hash are based on the type name,
// which works. If not under a known-good stl, provide our own name-based hash and equality
// functions that use the type name.
#if (PYBIND11_INTERNALS_VERSION <= 4 && defined(__GLIBCXX__)) \
|| (PYBIND11_INTERNALS_VERSION >= 5 && !defined(_LIBCPP_VERSION))
inline bool same_type(const std::type_info &lhs, const std::type_info &rhs) { return lhs == rhs; }
using type_hash = std::hash<std::type_index>;
using type_equal_to = std::equal_to<std::type_index>;
#else
inline bool same_type(const std::type_info &lhs, const std::type_info &rhs) {
return lhs.name() == rhs.name() || std::strcmp(lhs.name(), rhs.name()) == 0;
}
struct type_hash {
size_t operator()(const std::type_index &t) const {
size_t hash = 5381;
const char *ptr = t.name();
while (auto c = static_cast<unsigned char>(*ptr++)) {
hash = (hash * 33) ^ c;
}
return hash;
}
};
struct type_equal_to {
bool operator()(const std::type_index &lhs, const std::type_index &rhs) const {
return lhs.name() == rhs.name() || std::strcmp(lhs.name(), rhs.name()) == 0;
}
};
#endif
template <typename value_type>
using type_map = std::unordered_map<std::type_index, value_type, type_hash, type_equal_to>;
struct override_hash {
inline size_t operator()(const std::pair<const PyObject *, const char *> &v) const {
size_t value = std::hash<const void *>()(v.first);
value ^= std::hash<const void *>()(v.second) + 0x9e3779b9 + (value << 6) + (value >> 2);
return value;
}
};
/// Internal data structure used to track registered instances and types.
/// Whenever binary incompatible changes are made to this structure,
/// `PYBIND11_INTERNALS_VERSION` must be incremented.
struct internals {
// std::type_index -> pybind11's type information
type_map<type_info *> registered_types_cpp;
// PyTypeObject* -> base type_info(s)
std::unordered_map<PyTypeObject *, std::vector<type_info *>> registered_types_py;
std::unordered_multimap<const void *, instance *> registered_instances; // void * -> instance*
std::unordered_set<std::pair<const PyObject *, const char *>, override_hash>
inactive_override_cache;
type_map<std::vector<bool (*)(PyObject *, void *&)>> direct_conversions;
std::unordered_map<const PyObject *, std::vector<PyObject *>> patients;
std::forward_list<ExceptionTranslator> registered_exception_translators;
std::unordered_map<std::string, void *> shared_data; // Custom data to be shared across
// extensions
#if PYBIND11_INTERNALS_VERSION == 4
std::vector<PyObject *> unused_loader_patient_stack_remove_at_v5;
#endif
std::forward_list<std::string> static_strings; // Stores the std::strings backing
// detail::c_str()
PyTypeObject *static_property_type;
PyTypeObject *default_metaclass;
PyObject *instance_base;
#if defined(WITH_THREAD)
// Unused if PYBIND11_SIMPLE_GIL_MANAGEMENT is defined:
PYBIND11_TLS_KEY_INIT(tstate)
# if PYBIND11_INTERNALS_VERSION > 4
PYBIND11_TLS_KEY_INIT(loader_life_support_tls_key)
# endif // PYBIND11_INTERNALS_VERSION > 4
// Unused if PYBIND11_SIMPLE_GIL_MANAGEMENT is defined:
PyInterpreterState *istate = nullptr;
# if PYBIND11_INTERNALS_VERSION > 4
// Note that we have to use a std::string to allocate memory to ensure a unique address
// We want unique addresses since we use pointer equality to compare function records
std::string function_record_capsule_name = internals_function_record_capsule_name;
# endif
internals() = default;
internals(const internals &other) = delete;
internals &operator=(const internals &other) = delete;
~internals() {
# if PYBIND11_INTERNALS_VERSION > 4
PYBIND11_TLS_FREE(loader_life_support_tls_key);
# endif // PYBIND11_INTERNALS_VERSION > 4
// This destructor is called *after* Py_Finalize() in finalize_interpreter().
// That *SHOULD BE* fine. The following details what happens when PyThread_tss_free is
// called. PYBIND11_TLS_FREE is PyThread_tss_free on python 3.7+. On older python, it does
// nothing. PyThread_tss_free calls PyThread_tss_delete and PyMem_RawFree.
// PyThread_tss_delete just calls TlsFree (on Windows) or pthread_key_delete (on *NIX).
// Neither of those have anything to do with CPython internals. PyMem_RawFree *requires*
// that the `tstate` be allocated with the CPython allocator.
PYBIND11_TLS_FREE(tstate);
}
#endif
};
/// Additional type information which does not fit into the PyTypeObject.
/// Changes to this struct also require bumping `PYBIND11_INTERNALS_VERSION`.
struct type_info {
PyTypeObject *type;
const std::type_info *cpptype;
size_t type_size, type_align, holder_size_in_ptrs;
void *(*operator_new)(size_t);
void (*init_instance)(instance *, const void *);
void (*dealloc)(value_and_holder &v_h);
std::vector<PyObject *(*) (PyObject *, PyTypeObject *)> implicit_conversions;
std::vector<std::pair<const std::type_info *, void *(*) (void *)>> implicit_casts;
std::vector<bool (*)(PyObject *, void *&)> *direct_conversions;
buffer_info *(*get_buffer)(PyObject *, void *) = nullptr;
void *get_buffer_data = nullptr;
void *(*module_local_load)(PyObject *, const type_info *) = nullptr;
/* A simple type never occurs as a (direct or indirect) parent
* of a class that makes use of multiple inheritance.
* A type can be simple even if it has non-simple ancestors as long as it has no descendants.
*/
bool simple_type : 1;
/* True if there is no multiple inheritance in this type's inheritance tree */
bool simple_ancestors : 1;
/* for base vs derived holder_type checks */
bool default_holder : 1;
/* true if this is a type registered with py::module_local */
bool module_local : 1;
};
/// On MSVC, debug and release builds are not ABI-compatible!
#if defined(_MSC_VER) && defined(_DEBUG)
# define PYBIND11_BUILD_TYPE "_debug"
#else
# define PYBIND11_BUILD_TYPE ""
#endif
/// Let's assume that different compilers are ABI-incompatible.
/// A user can manually set this string if they know their
/// compiler is compatible.
#ifndef PYBIND11_COMPILER_TYPE
# if defined(_MSC_VER)
# define PYBIND11_COMPILER_TYPE "_msvc"
# elif defined(__INTEL_COMPILER)
# define PYBIND11_COMPILER_TYPE "_icc"
# elif defined(__clang__)
# define PYBIND11_COMPILER_TYPE "_clang"
# elif defined(__PGI)
# define PYBIND11_COMPILER_TYPE "_pgi"
# elif defined(__MINGW32__)
# define PYBIND11_COMPILER_TYPE "_mingw"
# elif defined(__CYGWIN__)
# define PYBIND11_COMPILER_TYPE "_gcc_cygwin"
# elif defined(__GNUC__)
# define PYBIND11_COMPILER_TYPE "_gcc"
# else
# define PYBIND11_COMPILER_TYPE "_unknown"
# endif
#endif
/// Also standard libs
#ifndef PYBIND11_STDLIB
# if defined(_LIBCPP_VERSION)
# define PYBIND11_STDLIB "_libcpp"
# elif defined(__GLIBCXX__) || defined(__GLIBCPP__)
# define PYBIND11_STDLIB "_libstdcpp"
# else
# define PYBIND11_STDLIB ""
# endif
#endif
/// On Linux/OSX, changes in __GXX_ABI_VERSION__ indicate ABI incompatibility.
#ifndef PYBIND11_BUILD_ABI
# if defined(__GXX_ABI_VERSION)
# define PYBIND11_BUILD_ABI "_cxxabi" PYBIND11_TOSTRING(__GXX_ABI_VERSION)
# else
# define PYBIND11_BUILD_ABI ""
# endif
#endif
#ifndef PYBIND11_INTERNALS_KIND
# if defined(WITH_THREAD)
# define PYBIND11_INTERNALS_KIND ""
# else
# define PYBIND11_INTERNALS_KIND "_without_thread"
# endif
#endif
#define PYBIND11_INTERNALS_ID \
"__pybind11_internals_v" PYBIND11_TOSTRING(PYBIND11_INTERNALS_VERSION) \
PYBIND11_INTERNALS_KIND PYBIND11_COMPILER_TYPE PYBIND11_STDLIB PYBIND11_BUILD_ABI \
PYBIND11_BUILD_TYPE "__"
#define PYBIND11_MODULE_LOCAL_ID \
"__pybind11_module_local_v" PYBIND11_TOSTRING(PYBIND11_INTERNALS_VERSION) \
PYBIND11_INTERNALS_KIND PYBIND11_COMPILER_TYPE PYBIND11_STDLIB PYBIND11_BUILD_ABI \
PYBIND11_BUILD_TYPE "__"
/// Each module locally stores a pointer to the `internals` data. The data
/// itself is shared among modules with the same `PYBIND11_INTERNALS_ID`.
inline internals **&get_internals_pp() {
static internals **internals_pp = nullptr;
return internals_pp;
}
// forward decl
inline void translate_exception(std::exception_ptr);
template <class T,
enable_if_t<std::is_same<std::nested_exception, remove_cvref_t<T>>::value, int> = 0>
bool handle_nested_exception(const T &exc, const std::exception_ptr &p) {
std::exception_ptr nested = exc.nested_ptr();
if (nested != nullptr && nested != p) {
translate_exception(nested);
return true;
}
return false;
}
template <class T,
enable_if_t<!std::is_same<std::nested_exception, remove_cvref_t<T>>::value, int> = 0>
bool handle_nested_exception(const T &exc, const std::exception_ptr &p) {
if (const auto *nep = dynamic_cast<const std::nested_exception *>(std::addressof(exc))) {
return handle_nested_exception(*nep, p);
}
return false;
}
inline bool raise_err(PyObject *exc_type, const char *msg) {
if (PyErr_Occurred()) {
raise_from(exc_type, msg);
return true;
}
PyErr_SetString(exc_type, msg);
return false;
}
inline void translate_exception(std::exception_ptr p) {
if (!p) {
return;
}
try {
std::rethrow_exception(p);
} catch (error_already_set &e) {
handle_nested_exception(e, p);
e.restore();
return;
} catch (const builtin_exception &e) {
// Could not use template since it's an abstract class.
if (const auto *nep = dynamic_cast<const std::nested_exception *>(std::addressof(e))) {
handle_nested_exception(*nep, p);
}
e.set_error();
return;
} catch (const std::bad_alloc &e) {
handle_nested_exception(e, p);
raise_err(PyExc_MemoryError, e.what());
return;
} catch (const std::domain_error &e) {
handle_nested_exception(e, p);
raise_err(PyExc_ValueError, e.what());
return;
} catch (const std::invalid_argument &e) {
handle_nested_exception(e, p);
raise_err(PyExc_ValueError, e.what());
return;
} catch (const std::length_error &e) {
handle_nested_exception(e, p);
raise_err(PyExc_ValueError, e.what());
return;
} catch (const std::out_of_range &e) {
handle_nested_exception(e, p);
raise_err(PyExc_IndexError, e.what());
return;
} catch (const std::range_error &e) {
handle_nested_exception(e, p);
raise_err(PyExc_ValueError, e.what());
return;
} catch (const std::overflow_error &e) {
handle_nested_exception(e, p);
raise_err(PyExc_OverflowError, e.what());
return;
} catch (const std::exception &e) {
handle_nested_exception(e, p);
raise_err(PyExc_RuntimeError, e.what());
return;
} catch (const std::nested_exception &e) {
handle_nested_exception(e, p);
raise_err(PyExc_RuntimeError, "Caught an unknown nested exception!");
return;
} catch (...) {
raise_err(PyExc_RuntimeError, "Caught an unknown exception!");
return;
}
}
#if !defined(__GLIBCXX__)
inline void translate_local_exception(std::exception_ptr p) {
try {
if (p) {
std::rethrow_exception(p);
}
} catch (error_already_set &e) {
e.restore();
return;
} catch (const builtin_exception &e) {
e.set_error();
return;
}
}
#endif
inline object get_python_state_dict() {
object state_dict;
#if PYBIND11_INTERNALS_VERSION <= 4 || PY_VERSION_HEX < 0x03080000 || defined(PYPY_VERSION)
state_dict = reinterpret_borrow<object>(PyEval_GetBuiltins());
#else
# if PY_VERSION_HEX < 0x03090000
PyInterpreterState *istate = _PyInterpreterState_Get();
# else
PyInterpreterState *istate = PyInterpreterState_Get();
# endif
if (istate) {
state_dict = reinterpret_borrow<object>(PyInterpreterState_GetDict(istate));
}
#endif
if (!state_dict) {
raise_from(PyExc_SystemError, "pybind11::detail::get_python_state_dict() FAILED");
}
return state_dict;
}
inline object get_internals_obj_from_state_dict(handle state_dict) {
return reinterpret_borrow<object>(dict_getitemstring(state_dict.ptr(), PYBIND11_INTERNALS_ID));
}
inline internals **get_internals_pp_from_capsule(handle obj) {
void *raw_ptr = PyCapsule_GetPointer(obj.ptr(), /*name=*/nullptr);
if (raw_ptr == nullptr) {
raise_from(PyExc_SystemError, "pybind11::detail::get_internals_pp_from_capsule() FAILED");
}
return static_cast<internals **>(raw_ptr);
}
/// Return a reference to the current `internals` data
PYBIND11_NOINLINE internals &get_internals() {
auto **&internals_pp = get_internals_pp();
if (internals_pp && *internals_pp) {
return **internals_pp;
}
#if defined(WITH_THREAD)
# if defined(PYBIND11_SIMPLE_GIL_MANAGEMENT)
gil_scoped_acquire gil;
# else
// Ensure that the GIL is held since we will need to make Python calls.
// Cannot use py::gil_scoped_acquire here since that constructor calls get_internals.
struct gil_scoped_acquire_local {
gil_scoped_acquire_local() : state(PyGILState_Ensure()) {}
gil_scoped_acquire_local(const gil_scoped_acquire_local &) = delete;
gil_scoped_acquire_local &operator=(const gil_scoped_acquire_local &) = delete;
~gil_scoped_acquire_local() { PyGILState_Release(state); }
const PyGILState_STATE state;
} gil;
# endif
#endif
error_scope err_scope;
dict state_dict = get_python_state_dict();
if (object internals_obj = get_internals_obj_from_state_dict(state_dict)) {
internals_pp = get_internals_pp_from_capsule(internals_obj);
}
if (internals_pp && *internals_pp) {
// We loaded the internals through `state_dict`, which means that our `error_already_set`
// and `builtin_exception` may be different local classes than the ones set up in the
// initial exception translator, below, so add another for our local exception classes.
//
// libstdc++ doesn't require this (types there are identified only by name)
// libc++ with CPython doesn't require this (types are explicitly exported)
// libc++ with PyPy still need it, awaiting further investigation
#if !defined(__GLIBCXX__)
(*internals_pp)->registered_exception_translators.push_front(&translate_local_exception);
#endif
} else {
if (!internals_pp) {
internals_pp = new internals *();
}
auto *&internals_ptr = *internals_pp;
internals_ptr = new internals();
#if defined(WITH_THREAD)
PyThreadState *tstate = PyThreadState_Get();
// NOLINTNEXTLINE(bugprone-assignment-in-if-condition)
if (!PYBIND11_TLS_KEY_CREATE(internals_ptr->tstate)) {
pybind11_fail("get_internals: could not successfully initialize the tstate TSS key!");
}
PYBIND11_TLS_REPLACE_VALUE(internals_ptr->tstate, tstate);
# if PYBIND11_INTERNALS_VERSION > 4
// NOLINTNEXTLINE(bugprone-assignment-in-if-condition)
if (!PYBIND11_TLS_KEY_CREATE(internals_ptr->loader_life_support_tls_key)) {
pybind11_fail("get_internals: could not successfully initialize the "
"loader_life_support TSS key!");
}
# endif
internals_ptr->istate = tstate->interp;
#endif
state_dict[PYBIND11_INTERNALS_ID] = capsule(internals_pp);
internals_ptr->registered_exception_translators.push_front(&translate_exception);
internals_ptr->static_property_type = make_static_property_type();
internals_ptr->default_metaclass = make_default_metaclass();
internals_ptr->instance_base = make_object_base_type(internals_ptr->default_metaclass);
}
return **internals_pp;
}
// the internals struct (above) is shared between all the modules. local_internals are only
// for a single module. Any changes made to internals may require an update to
// PYBIND11_INTERNALS_VERSION, breaking backwards compatibility. local_internals is, by design,
// restricted to a single module. Whether a module has local internals or not should not
// impact any other modules, because the only things accessing the local internals is the
// module that contains them.
struct local_internals {
type_map<type_info *> registered_types_cpp;
std::forward_list<ExceptionTranslator> registered_exception_translators;
#if defined(WITH_THREAD) && PYBIND11_INTERNALS_VERSION == 4
// For ABI compatibility, we can't store the loader_life_support TLS key in
// the `internals` struct directly. Instead, we store it in `shared_data` and
// cache a copy in `local_internals`. If we allocated a separate TLS key for
// each instance of `local_internals`, we could end up allocating hundreds of
// TLS keys if hundreds of different pybind11 modules are loaded (which is a
// plausible number).
PYBIND11_TLS_KEY_INIT(loader_life_support_tls_key)
// Holds the shared TLS key for the loader_life_support stack.
struct shared_loader_life_support_data {
PYBIND11_TLS_KEY_INIT(loader_life_support_tls_key)
shared_loader_life_support_data() {
// NOLINTNEXTLINE(bugprone-assignment-in-if-condition)
if (!PYBIND11_TLS_KEY_CREATE(loader_life_support_tls_key)) {
pybind11_fail("local_internals: could not successfully initialize the "
"loader_life_support TLS key!");
}
}
// We can't help but leak the TLS key, because Python never unloads extension modules.
};
local_internals() {
auto &internals = get_internals();
// Get or create the `loader_life_support_stack_key`.
auto &ptr = internals.shared_data["_life_support"];
if (!ptr) {
ptr = new shared_loader_life_support_data;
}
loader_life_support_tls_key
= static_cast<shared_loader_life_support_data *>(ptr)->loader_life_support_tls_key;
}
#endif // defined(WITH_THREAD) && PYBIND11_INTERNALS_VERSION == 4
};
/// Works like `get_internals`, but for things which are locally registered.
inline local_internals &get_local_internals() {
// Current static can be created in the interpreter finalization routine. If the later will be
// destroyed in another static variable destructor, creation of this static there will cause
// static deinitialization fiasco. In order to avoid it we avoid destruction of the
// local_internals static. One can read more about the problem and current solution here:
// https://google.github.io/styleguide/cppguide.html#Static_and_Global_Variables
static auto *locals = new local_internals();
return *locals;
}
/// Constructs a std::string with the given arguments, stores it in `internals`, and returns its
/// `c_str()`. Such strings objects have a long storage duration -- the internal strings are only
/// cleared when the program exits or after interpreter shutdown (when embedding), and so are
/// suitable for c-style strings needed by Python internals (such as PyTypeObject's tp_name).
template <typename... Args>
const char *c_str(Args &&...args) {
auto &strings = get_internals().static_strings;
strings.emplace_front(std::forward<Args>(args)...);
return strings.front().c_str();
}
inline const char *get_function_record_capsule_name() {
#if PYBIND11_INTERNALS_VERSION > 4
return get_internals().function_record_capsule_name.c_str();
#else
return nullptr;
#endif
}
// Determine whether or not the following capsule contains a pybind11 function record.
// Note that we use `internals` to make sure that only ABI compatible records are touched.
//
// This check is currently used in two places:
// - An important optimization in functional.h to avoid overhead in C++ -> Python -> C++
// - The sibling feature of cpp_function to allow overloads
inline bool is_function_record_capsule(const capsule &cap) {
// Pointer equality as we rely on internals() to ensure unique pointers
return cap.name() == get_function_record_capsule_name();
}
PYBIND11_NAMESPACE_END(detail)
/// Returns a named pointer that is shared among all extension modules (using the same
/// pybind11 version) running in the current interpreter. Names starting with underscores
/// are reserved for internal usage. Returns `nullptr` if no matching entry was found.
PYBIND11_NOINLINE void *get_shared_data(const std::string &name) {
auto &internals = detail::get_internals();
auto it = internals.shared_data.find(name);
return it != internals.shared_data.end() ? it->second : nullptr;
}
/// Set the shared data that can be later recovered by `get_shared_data()`.
PYBIND11_NOINLINE void *set_shared_data(const std::string &name, void *data) {
detail::get_internals().shared_data[name] = data;
return data;
}
/// Returns a typed reference to a shared data entry (by using `get_shared_data()`) if
/// such entry exists. Otherwise, a new object of default-constructible type `T` is
/// added to the shared data under the given name and a reference to it is returned.
template <typename T>
T &get_or_create_shared_data(const std::string &name) {
auto &internals = detail::get_internals();
auto it = internals.shared_data.find(name);
T *ptr = (T *) (it != internals.shared_data.end() ? it->second : nullptr);
if (!ptr) {
ptr = new T();
internals.shared_data[name] = ptr;
}
return *ptr;
}
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)

File diff suppressed because it is too large Load Diff

View File

@ -1,65 +0,0 @@
/*
pybind11/detail/typeid.h: Compiler-independent access to type identifiers
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include <cstdio>
#include <cstdlib>
#if defined(__GNUG__)
# include <cxxabi.h>
#endif
#include "common.h"
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
PYBIND11_NAMESPACE_BEGIN(detail)
/// Erase all occurrences of a substring
inline void erase_all(std::string &string, const std::string &search) {
for (size_t pos = 0;;) {
pos = string.find(search, pos);
if (pos == std::string::npos) {
break;
}
string.erase(pos, search.length());
}
}
PYBIND11_NOINLINE void clean_type_id(std::string &name) {
#if defined(__GNUG__)
int status = 0;
std::unique_ptr<char, void (*)(void *)> res{
abi::__cxa_demangle(name.c_str(), nullptr, nullptr, &status), std::free};
if (status == 0) {
name = res.get();
}
#else
detail::erase_all(name, "class ");
detail::erase_all(name, "struct ");
detail::erase_all(name, "enum ");
#endif
detail::erase_all(name, "pybind11::");
}
inline std::string clean_type_id(const char *typeid_name) {
std::string name(typeid_name);
detail::clean_type_id(name);
return name;
}
PYBIND11_NAMESPACE_END(detail)
/// Return a string representation of a C++ type
template <typename T>
static std::string type_id() {
return detail::clean_type_id(typeid(T).name());
}
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)

View File

@ -1,12 +0,0 @@
/*
pybind11/eigen.h: Transparent conversion for dense and sparse Eigen matrices
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "eigen/matrix.h"

View File

@ -1,9 +0,0 @@
// Copyright (c) 2023 The pybind Community.
#pragma once
// Common message for `static_assert()`s, which are useful to easily
// preempt much less obvious errors.
#define PYBIND11_EIGEN_MESSAGE_POINTER_TYPES_ARE_NOT_SUPPORTED \
"Pointer types (in particular `PyObject *`) are not supported as scalar types for Eigen " \
"types."

View File

@ -1,714 +0,0 @@
/*
pybind11/eigen/matrix.h: Transparent conversion for dense and sparse Eigen matrices
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "../numpy.h"
#include "common.h"
/* HINT: To suppress warnings originating from the Eigen headers, use -isystem.
See also:
https://stackoverflow.com/questions/2579576/i-dir-vs-isystem-dir
https://stackoverflow.com/questions/1741816/isystem-for-ms-visual-studio-c-compiler
*/
PYBIND11_WARNING_PUSH
PYBIND11_WARNING_DISABLE_MSVC(5054) // https://github.com/pybind/pybind11/pull/3741
// C5054: operator '&': deprecated between enumerations of different types
#if defined(__MINGW32__)
PYBIND11_WARNING_DISABLE_GCC("-Wmaybe-uninitialized")
#endif
#include <Eigen/Core>
#include <Eigen/SparseCore>
PYBIND11_WARNING_POP
// Eigen prior to 3.2.7 doesn't have proper move constructors--but worse, some classes get implicit
// move constructors that break things. We could detect this an explicitly copy, but an extra copy
// of matrices seems highly undesirable.
static_assert(EIGEN_VERSION_AT_LEAST(3, 2, 7),
"Eigen matrix support in pybind11 requires Eigen >= 3.2.7");
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
PYBIND11_WARNING_DISABLE_MSVC(4127)
// Provide a convenience alias for easier pass-by-ref usage with fully dynamic strides:
using EigenDStride = Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic>;
template <typename MatrixType>
using EigenDRef = Eigen::Ref<MatrixType, 0, EigenDStride>;
template <typename MatrixType>
using EigenDMap = Eigen::Map<MatrixType, 0, EigenDStride>;
PYBIND11_NAMESPACE_BEGIN(detail)
#if EIGEN_VERSION_AT_LEAST(3, 3, 0)
using EigenIndex = Eigen::Index;
template <typename Scalar, int Flags, typename StorageIndex>
using EigenMapSparseMatrix = Eigen::Map<Eigen::SparseMatrix<Scalar, Flags, StorageIndex>>;
#else
using EigenIndex = EIGEN_DEFAULT_DENSE_INDEX_TYPE;
template <typename Scalar, int Flags, typename StorageIndex>
using EigenMapSparseMatrix = Eigen::MappedSparseMatrix<Scalar, Flags, StorageIndex>;
#endif
// Matches Eigen::Map, Eigen::Ref, blocks, etc:
template <typename T>
using is_eigen_dense_map = all_of<is_template_base_of<Eigen::DenseBase, T>,
std::is_base_of<Eigen::MapBase<T, Eigen::ReadOnlyAccessors>, T>>;
template <typename T>
using is_eigen_mutable_map = std::is_base_of<Eigen::MapBase<T, Eigen::WriteAccessors>, T>;
template <typename T>
using is_eigen_dense_plain
= all_of<negation<is_eigen_dense_map<T>>, is_template_base_of<Eigen::PlainObjectBase, T>>;
template <typename T>
using is_eigen_sparse = is_template_base_of<Eigen::SparseMatrixBase, T>;
// Test for objects inheriting from EigenBase<Derived> that aren't captured by the above. This
// basically covers anything that can be assigned to a dense matrix but that don't have a typical
// matrix data layout that can be copied from their .data(). For example, DiagonalMatrix and
// SelfAdjointView fall into this category.
template <typename T>
using is_eigen_other
= all_of<is_template_base_of<Eigen::EigenBase, T>,
negation<any_of<is_eigen_dense_map<T>, is_eigen_dense_plain<T>, is_eigen_sparse<T>>>>;
// Captures numpy/eigen conformability status (returned by EigenProps::conformable()):
template <bool EigenRowMajor>
struct EigenConformable {
bool conformable = false;
EigenIndex rows = 0, cols = 0;
EigenDStride stride{0, 0}; // Only valid if negativestrides is false!
bool negativestrides = false; // If true, do not use stride!
// NOLINTNEXTLINE(google-explicit-constructor)
EigenConformable(bool fits = false) : conformable{fits} {}
// Matrix type:
EigenConformable(EigenIndex r, EigenIndex c, EigenIndex rstride, EigenIndex cstride)
: conformable{true}, rows{r}, cols{c},
// TODO: when Eigen bug #747 is fixed, remove the tests for non-negativity.
// http://eigen.tuxfamily.org/bz/show_bug.cgi?id=747
stride{EigenRowMajor ? (rstride > 0 ? rstride : 0)
: (cstride > 0 ? cstride : 0) /* outer stride */,
EigenRowMajor ? (cstride > 0 ? cstride : 0)
: (rstride > 0 ? rstride : 0) /* inner stride */},
negativestrides{rstride < 0 || cstride < 0} {}
// Vector type:
EigenConformable(EigenIndex r, EigenIndex c, EigenIndex stride)
: EigenConformable(r, c, r == 1 ? c * stride : stride, c == 1 ? r : r * stride) {}
template <typename props>
bool stride_compatible() const {
// To have compatible strides, we need (on both dimensions) one of fully dynamic strides,
// matching strides, or a dimension size of 1 (in which case the stride value is
// irrelevant). Alternatively, if any dimension size is 0, the strides are not relevant
// (and numpy ≥ 1.23 sets the strides to 0 in that case, so we need to check explicitly).
if (negativestrides) {
return false;
}
if (rows == 0 || cols == 0) {
return true;
}
return (props::inner_stride == Eigen::Dynamic || props::inner_stride == stride.inner()
|| (EigenRowMajor ? cols : rows) == 1)
&& (props::outer_stride == Eigen::Dynamic || props::outer_stride == stride.outer()
|| (EigenRowMajor ? rows : cols) == 1);
}
// NOLINTNEXTLINE(google-explicit-constructor)
operator bool() const { return conformable; }
};
template <typename Type>
struct eigen_extract_stride {
using type = Type;
};
template <typename PlainObjectType, int MapOptions, typename StrideType>
struct eigen_extract_stride<Eigen::Map<PlainObjectType, MapOptions, StrideType>> {
using type = StrideType;
};
template <typename PlainObjectType, int Options, typename StrideType>
struct eigen_extract_stride<Eigen::Ref<PlainObjectType, Options, StrideType>> {
using type = StrideType;
};
// Helper struct for extracting information from an Eigen type
template <typename Type_>
struct EigenProps {
using Type = Type_;
using Scalar = typename Type::Scalar;
using StrideType = typename eigen_extract_stride<Type>::type;
static constexpr EigenIndex rows = Type::RowsAtCompileTime, cols = Type::ColsAtCompileTime,
size = Type::SizeAtCompileTime;
static constexpr bool row_major = Type::IsRowMajor,
vector
= Type::IsVectorAtCompileTime, // At least one dimension has fixed size 1
fixed_rows = rows != Eigen::Dynamic, fixed_cols = cols != Eigen::Dynamic,
fixed = size != Eigen::Dynamic, // Fully-fixed size
dynamic = !fixed_rows && !fixed_cols; // Fully-dynamic size
template <EigenIndex i, EigenIndex ifzero>
using if_zero = std::integral_constant<EigenIndex, i == 0 ? ifzero : i>;
static constexpr EigenIndex inner_stride
= if_zero<StrideType::InnerStrideAtCompileTime, 1>::value,
outer_stride = if_zero < StrideType::OuterStrideAtCompileTime,
vector ? size
: row_major ? cols
: rows > ::value;
static constexpr bool dynamic_stride
= inner_stride == Eigen::Dynamic && outer_stride == Eigen::Dynamic;
static constexpr bool requires_row_major
= !dynamic_stride && !vector && (row_major ? inner_stride : outer_stride) == 1;
static constexpr bool requires_col_major
= !dynamic_stride && !vector && (row_major ? outer_stride : inner_stride) == 1;
// Takes an input array and determines whether we can make it fit into the Eigen type. If
// the array is a vector, we attempt to fit it into either an Eigen 1xN or Nx1 vector
// (preferring the latter if it will fit in either, i.e. for a fully dynamic matrix type).
static EigenConformable<row_major> conformable(const array &a) {
const auto dims = a.ndim();
if (dims < 1 || dims > 2) {
return false;
}
if (dims == 2) { // Matrix type: require exact match (or dynamic)
EigenIndex np_rows = a.shape(0), np_cols = a.shape(1),
np_rstride = a.strides(0) / static_cast<ssize_t>(sizeof(Scalar)),
np_cstride = a.strides(1) / static_cast<ssize_t>(sizeof(Scalar));
if ((fixed_rows && np_rows != rows) || (fixed_cols && np_cols != cols)) {
return false;
}
return {np_rows, np_cols, np_rstride, np_cstride};
}
// Otherwise we're storing an n-vector. Only one of the strides will be used, but
// whichever is used, we want the (single) numpy stride value.
const EigenIndex n = a.shape(0),
stride = a.strides(0) / static_cast<ssize_t>(sizeof(Scalar));
if (vector) { // Eigen type is a compile-time vector
if (fixed && size != n) {
return false; // Vector size mismatch
}
return {rows == 1 ? 1 : n, cols == 1 ? 1 : n, stride};
}
if (fixed) {
// The type has a fixed size, but is not a vector: abort
return false;
}
if (fixed_cols) {
// Since this isn't a vector, cols must be != 1. We allow this only if it exactly
// equals the number of elements (rows is Dynamic, and so 1 row is allowed).
if (cols != n) {
return false;
}
return {1, n, stride};
} // Otherwise it's either fully dynamic, or column dynamic; both become a column vector
if (fixed_rows && rows != n) {
return false;
}
return {n, 1, stride};
}
static constexpr bool show_writeable
= is_eigen_dense_map<Type>::value && is_eigen_mutable_map<Type>::value;
static constexpr bool show_order = is_eigen_dense_map<Type>::value;
static constexpr bool show_c_contiguous = show_order && requires_row_major;
static constexpr bool show_f_contiguous
= !show_c_contiguous && show_order && requires_col_major;
static constexpr auto descriptor
= const_name("numpy.ndarray[") + npy_format_descriptor<Scalar>::name + const_name("[")
+ const_name<fixed_rows>(const_name<(size_t) rows>(), const_name("m")) + const_name(", ")
+ const_name<fixed_cols>(const_name<(size_t) cols>(), const_name("n")) + const_name("]")
+
// For a reference type (e.g. Ref<MatrixXd>) we have other constraints that might need to
// be satisfied: writeable=True (for a mutable reference), and, depending on the map's
// stride options, possibly f_contiguous or c_contiguous. We include them in the
// descriptor output to provide some hint as to why a TypeError is occurring (otherwise
// it can be confusing to see that a function accepts a 'numpy.ndarray[float64[3,2]]' and
// an error message that you *gave* a numpy.ndarray of the right type and dimensions.
const_name<show_writeable>(", flags.writeable", "")
+ const_name<show_c_contiguous>(", flags.c_contiguous", "")
+ const_name<show_f_contiguous>(", flags.f_contiguous", "") + const_name("]");
};
// Casts an Eigen type to numpy array. If given a base, the numpy array references the src data,
// otherwise it'll make a copy. writeable lets you turn off the writeable flag for the array.
template <typename props>
handle
eigen_array_cast(typename props::Type const &src, handle base = handle(), bool writeable = true) {
constexpr ssize_t elem_size = sizeof(typename props::Scalar);
array a;
if (props::vector) {
a = array({src.size()}, {elem_size * src.innerStride()}, src.data(), base);
} else {
a = array({src.rows(), src.cols()},
{elem_size * src.rowStride(), elem_size * src.colStride()},
src.data(),
base);
}
if (!writeable) {
array_proxy(a.ptr())->flags &= ~detail::npy_api::NPY_ARRAY_WRITEABLE_;
}
return a.release();
}
// Takes an lvalue ref to some Eigen type and a (python) base object, creating a numpy array that
// reference the Eigen object's data with `base` as the python-registered base class (if omitted,
// the base will be set to None, and lifetime management is up to the caller). The numpy array is
// non-writeable if the given type is const.
template <typename props, typename Type>
handle eigen_ref_array(Type &src, handle parent = none()) {
// none here is to get past array's should-we-copy detection, which currently always
// copies when there is no base. Setting the base to None should be harmless.
return eigen_array_cast<props>(src, parent, !std::is_const<Type>::value);
}
// Takes a pointer to some dense, plain Eigen type, builds a capsule around it, then returns a
// numpy array that references the encapsulated data with a python-side reference to the capsule to
// tie its destruction to that of any dependent python objects. Const-ness is determined by
// whether or not the Type of the pointer given is const.
template <typename props, typename Type, typename = enable_if_t<is_eigen_dense_plain<Type>::value>>
handle eigen_encapsulate(Type *src) {
capsule base(src, [](void *o) { delete static_cast<Type *>(o); });
return eigen_ref_array<props>(*src, base);
}
// Type caster for regular, dense matrix types (e.g. MatrixXd), but not maps/refs/etc. of dense
// types.
template <typename Type>
struct type_caster<Type, enable_if_t<is_eigen_dense_plain<Type>::value>> {
using Scalar = typename Type::Scalar;
static_assert(!std::is_pointer<Scalar>::value,
PYBIND11_EIGEN_MESSAGE_POINTER_TYPES_ARE_NOT_SUPPORTED);
using props = EigenProps<Type>;
bool load(handle src, bool convert) {
// If we're in no-convert mode, only load if given an array of the correct type
if (!convert && !isinstance<array_t<Scalar>>(src)) {
return false;
}
// Coerce into an array, but don't do type conversion yet; the copy below handles it.
auto buf = array::ensure(src);
if (!buf) {
return false;
}
auto dims = buf.ndim();
if (dims < 1 || dims > 2) {
return false;
}
auto fits = props::conformable(buf);
if (!fits) {
return false;
}
// Allocate the new type, then build a numpy reference into it
value = Type(fits.rows, fits.cols);
auto ref = reinterpret_steal<array>(eigen_ref_array<props>(value));
if (dims == 1) {
ref = ref.squeeze();
} else if (ref.ndim() == 1) {
buf = buf.squeeze();
}
int result = detail::npy_api::get().PyArray_CopyInto_(ref.ptr(), buf.ptr());
if (result < 0) { // Copy failed!
PyErr_Clear();
return false;
}
return true;
}
private:
// Cast implementation
template <typename CType>
static handle cast_impl(CType *src, return_value_policy policy, handle parent) {
switch (policy) {
case return_value_policy::take_ownership:
case return_value_policy::automatic:
return eigen_encapsulate<props>(src);
case return_value_policy::move:
return eigen_encapsulate<props>(new CType(std::move(*src)));
case return_value_policy::copy:
return eigen_array_cast<props>(*src);
case return_value_policy::reference:
case return_value_policy::automatic_reference:
return eigen_ref_array<props>(*src);
case return_value_policy::reference_internal:
return eigen_ref_array<props>(*src, parent);
default:
throw cast_error("unhandled return_value_policy: should not happen!");
};
}
public:
// Normal returned non-reference, non-const value:
static handle cast(Type &&src, return_value_policy /* policy */, handle parent) {
return cast_impl(&src, return_value_policy::move, parent);
}
// If you return a non-reference const, we mark the numpy array readonly:
static handle cast(const Type &&src, return_value_policy /* policy */, handle parent) {
return cast_impl(&src, return_value_policy::move, parent);
}
// lvalue reference return; default (automatic) becomes copy
static handle cast(Type &src, return_value_policy policy, handle parent) {
if (policy == return_value_policy::automatic
|| policy == return_value_policy::automatic_reference) {
policy = return_value_policy::copy;
}
return cast_impl(&src, policy, parent);
}
// const lvalue reference return; default (automatic) becomes copy
static handle cast(const Type &src, return_value_policy policy, handle parent) {
if (policy == return_value_policy::automatic
|| policy == return_value_policy::automatic_reference) {
policy = return_value_policy::copy;
}
return cast(&src, policy, parent);
}
// non-const pointer return
static handle cast(Type *src, return_value_policy policy, handle parent) {
return cast_impl(src, policy, parent);
}
// const pointer return
static handle cast(const Type *src, return_value_policy policy, handle parent) {
return cast_impl(src, policy, parent);
}
static constexpr auto name = props::descriptor;
// NOLINTNEXTLINE(google-explicit-constructor)
operator Type *() { return &value; }
// NOLINTNEXTLINE(google-explicit-constructor)
operator Type &() { return value; }
// NOLINTNEXTLINE(google-explicit-constructor)
operator Type &&() && { return std::move(value); }
template <typename T>
using cast_op_type = movable_cast_op_type<T>;
private:
Type value;
};
// Base class for casting reference/map/block/etc. objects back to python.
template <typename MapType>
struct eigen_map_caster {
static_assert(!std::is_pointer<typename MapType::Scalar>::value,
PYBIND11_EIGEN_MESSAGE_POINTER_TYPES_ARE_NOT_SUPPORTED);
private:
using props = EigenProps<MapType>;
public:
// Directly referencing a ref/map's data is a bit dangerous (whatever the map/ref points to has
// to stay around), but we'll allow it under the assumption that you know what you're doing
// (and have an appropriate keep_alive in place). We return a numpy array pointing directly at
// the ref's data (The numpy array ends up read-only if the ref was to a const matrix type.)
// Note that this means you need to ensure you don't destroy the object in some other way (e.g.
// with an appropriate keep_alive, or with a reference to a statically allocated matrix).
static handle cast(const MapType &src, return_value_policy policy, handle parent) {
switch (policy) {
case return_value_policy::copy:
return eigen_array_cast<props>(src);
case return_value_policy::reference_internal:
return eigen_array_cast<props>(src, parent, is_eigen_mutable_map<MapType>::value);
case return_value_policy::reference:
case return_value_policy::automatic:
case return_value_policy::automatic_reference:
return eigen_array_cast<props>(src, none(), is_eigen_mutable_map<MapType>::value);
default:
// move, take_ownership don't make any sense for a ref/map:
pybind11_fail("Invalid return_value_policy for Eigen Map/Ref/Block type");
}
}
static constexpr auto name = props::descriptor;
// Explicitly delete these: support python -> C++ conversion on these (i.e. these can be return
// types but not bound arguments). We still provide them (with an explicitly delete) so that
// you end up here if you try anyway.
bool load(handle, bool) = delete;
operator MapType() = delete;
template <typename>
using cast_op_type = MapType;
};
// We can return any map-like object (but can only load Refs, specialized next):
template <typename Type>
struct type_caster<Type, enable_if_t<is_eigen_dense_map<Type>::value>> : eigen_map_caster<Type> {};
// Loader for Ref<...> arguments. See the documentation for info on how to make this work without
// copying (it requires some extra effort in many cases).
template <typename PlainObjectType, typename StrideType>
struct type_caster<
Eigen::Ref<PlainObjectType, 0, StrideType>,
enable_if_t<is_eigen_dense_map<Eigen::Ref<PlainObjectType, 0, StrideType>>::value>>
: public eigen_map_caster<Eigen::Ref<PlainObjectType, 0, StrideType>> {
private:
using Type = Eigen::Ref<PlainObjectType, 0, StrideType>;
using props = EigenProps<Type>;
using Scalar = typename props::Scalar;
static_assert(!std::is_pointer<Scalar>::value,
PYBIND11_EIGEN_MESSAGE_POINTER_TYPES_ARE_NOT_SUPPORTED);
using MapType = Eigen::Map<PlainObjectType, 0, StrideType>;
using Array
= array_t<Scalar,
array::forcecast
| ((props::row_major ? props::inner_stride : props::outer_stride) == 1
? array::c_style
: (props::row_major ? props::outer_stride : props::inner_stride) == 1
? array::f_style
: 0)>;
static constexpr bool need_writeable = is_eigen_mutable_map<Type>::value;
// Delay construction (these have no default constructor)
std::unique_ptr<MapType> map;
std::unique_ptr<Type> ref;
// Our array. When possible, this is just a numpy array pointing to the source data, but
// sometimes we can't avoid copying (e.g. input is not a numpy array at all, has an
// incompatible layout, or is an array of a type that needs to be converted). Using a numpy
// temporary (rather than an Eigen temporary) saves an extra copy when we need both type
// conversion and storage order conversion. (Note that we refuse to use this temporary copy
// when loading an argument for a Ref<M> with M non-const, i.e. a read-write reference).
Array copy_or_ref;
public:
bool load(handle src, bool convert) {
// First check whether what we have is already an array of the right type. If not, we
// can't avoid a copy (because the copy is also going to do type conversion).
bool need_copy = !isinstance<Array>(src);
EigenConformable<props::row_major> fits;
if (!need_copy) {
// We don't need a converting copy, but we also need to check whether the strides are
// compatible with the Ref's stride requirements
auto aref = reinterpret_borrow<Array>(src);
if (aref && (!need_writeable || aref.writeable())) {
fits = props::conformable(aref);
if (!fits) {
return false; // Incompatible dimensions
}
if (!fits.template stride_compatible<props>()) {
need_copy = true;
} else {
copy_or_ref = std::move(aref);
}
} else {
need_copy = true;
}
}
if (need_copy) {
// We need to copy: If we need a mutable reference, or we're not supposed to convert
// (either because we're in the no-convert overload pass, or because we're explicitly
// instructed not to copy (via `py::arg().noconvert()`) we have to fail loading.
if (!convert || need_writeable) {
return false;
}
Array copy = Array::ensure(src);
if (!copy) {
return false;
}
fits = props::conformable(copy);
if (!fits || !fits.template stride_compatible<props>()) {
return false;
}
copy_or_ref = std::move(copy);
loader_life_support::add_patient(copy_or_ref);
}
ref.reset();
map.reset(new MapType(data(copy_or_ref),
fits.rows,
fits.cols,
make_stride(fits.stride.outer(), fits.stride.inner())));
ref.reset(new Type(*map));
return true;
}
// NOLINTNEXTLINE(google-explicit-constructor)
operator Type *() { return ref.get(); }
// NOLINTNEXTLINE(google-explicit-constructor)
operator Type &() { return *ref; }
template <typename _T>
using cast_op_type = pybind11::detail::cast_op_type<_T>;
private:
template <typename T = Type, enable_if_t<is_eigen_mutable_map<T>::value, int> = 0>
Scalar *data(Array &a) {
return a.mutable_data();
}
template <typename T = Type, enable_if_t<!is_eigen_mutable_map<T>::value, int> = 0>
const Scalar *data(Array &a) {
return a.data();
}
// Attempt to figure out a constructor of `Stride` that will work.
// If both strides are fixed, use a default constructor:
template <typename S>
using stride_ctor_default = bool_constant<S::InnerStrideAtCompileTime != Eigen::Dynamic
&& S::OuterStrideAtCompileTime != Eigen::Dynamic
&& std::is_default_constructible<S>::value>;
// Otherwise, if there is a two-index constructor, assume it is (outer,inner) like
// Eigen::Stride, and use it:
template <typename S>
using stride_ctor_dual
= bool_constant<!stride_ctor_default<S>::value
&& std::is_constructible<S, EigenIndex, EigenIndex>::value>;
// Otherwise, if there is a one-index constructor, and just one of the strides is dynamic, use
// it (passing whichever stride is dynamic).
template <typename S>
using stride_ctor_outer
= bool_constant<!any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value
&& S::OuterStrideAtCompileTime == Eigen::Dynamic
&& S::InnerStrideAtCompileTime != Eigen::Dynamic
&& std::is_constructible<S, EigenIndex>::value>;
template <typename S>
using stride_ctor_inner
= bool_constant<!any_of<stride_ctor_default<S>, stride_ctor_dual<S>>::value
&& S::InnerStrideAtCompileTime == Eigen::Dynamic
&& S::OuterStrideAtCompileTime != Eigen::Dynamic
&& std::is_constructible<S, EigenIndex>::value>;
template <typename S = StrideType, enable_if_t<stride_ctor_default<S>::value, int> = 0>
static S make_stride(EigenIndex, EigenIndex) {
return S();
}
template <typename S = StrideType, enable_if_t<stride_ctor_dual<S>::value, int> = 0>
static S make_stride(EigenIndex outer, EigenIndex inner) {
return S(outer, inner);
}
template <typename S = StrideType, enable_if_t<stride_ctor_outer<S>::value, int> = 0>
static S make_stride(EigenIndex outer, EigenIndex) {
return S(outer);
}
template <typename S = StrideType, enable_if_t<stride_ctor_inner<S>::value, int> = 0>
static S make_stride(EigenIndex, EigenIndex inner) {
return S(inner);
}
};
// type_caster for special matrix types (e.g. DiagonalMatrix), which are EigenBase, but not
// EigenDense (i.e. they don't have a data(), at least not with the usual matrix layout).
// load() is not supported, but we can cast them into the python domain by first copying to a
// regular Eigen::Matrix, then casting that.
template <typename Type>
struct type_caster<Type, enable_if_t<is_eigen_other<Type>::value>> {
static_assert(!std::is_pointer<typename Type::Scalar>::value,
PYBIND11_EIGEN_MESSAGE_POINTER_TYPES_ARE_NOT_SUPPORTED);
protected:
using Matrix
= Eigen::Matrix<typename Type::Scalar, Type::RowsAtCompileTime, Type::ColsAtCompileTime>;
using props = EigenProps<Matrix>;
public:
static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) {
handle h = eigen_encapsulate<props>(new Matrix(src));
return h;
}
static handle cast(const Type *src, return_value_policy policy, handle parent) {
return cast(*src, policy, parent);
}
static constexpr auto name = props::descriptor;
// Explicitly delete these: support python -> C++ conversion on these (i.e. these can be return
// types but not bound arguments). We still provide them (with an explicitly delete) so that
// you end up here if you try anyway.
bool load(handle, bool) = delete;
operator Type() = delete;
template <typename>
using cast_op_type = Type;
};
template <typename Type>
struct type_caster<Type, enable_if_t<is_eigen_sparse<Type>::value>> {
using Scalar = typename Type::Scalar;
static_assert(!std::is_pointer<Scalar>::value,
PYBIND11_EIGEN_MESSAGE_POINTER_TYPES_ARE_NOT_SUPPORTED);
using StorageIndex = remove_reference_t<decltype(*std::declval<Type>().outerIndexPtr())>;
using Index = typename Type::Index;
static constexpr bool rowMajor = Type::IsRowMajor;
bool load(handle src, bool) {
if (!src) {
return false;
}
auto obj = reinterpret_borrow<object>(src);
object sparse_module = module_::import("scipy.sparse");
object matrix_type = sparse_module.attr(rowMajor ? "csr_matrix" : "csc_matrix");
if (!type::handle_of(obj).is(matrix_type)) {
try {
obj = matrix_type(obj);
} catch (const error_already_set &) {
return false;
}
}
auto values = array_t<Scalar>((object) obj.attr("data"));
auto innerIndices = array_t<StorageIndex>((object) obj.attr("indices"));
auto outerIndices = array_t<StorageIndex>((object) obj.attr("indptr"));
auto shape = pybind11::tuple((pybind11::object) obj.attr("shape"));
auto nnz = obj.attr("nnz").cast<Index>();
if (!values || !innerIndices || !outerIndices) {
return false;
}
value = EigenMapSparseMatrix<Scalar,
Type::Flags &(Eigen::RowMajor | Eigen::ColMajor),
StorageIndex>(shape[0].cast<Index>(),
shape[1].cast<Index>(),
std::move(nnz),
outerIndices.mutable_data(),
innerIndices.mutable_data(),
values.mutable_data());
return true;
}
static handle cast(const Type &src, return_value_policy /* policy */, handle /* parent */) {
const_cast<Type &>(src).makeCompressed();
object matrix_type
= module_::import("scipy.sparse").attr(rowMajor ? "csr_matrix" : "csc_matrix");
array data(src.nonZeros(), src.valuePtr());
array outerIndices((rowMajor ? src.rows() : src.cols()) + 1, src.outerIndexPtr());
array innerIndices(src.nonZeros(), src.innerIndexPtr());
return matrix_type(pybind11::make_tuple(
std::move(data), std::move(innerIndices), std::move(outerIndices)),
pybind11::make_tuple(src.rows(), src.cols()))
.release();
}
PYBIND11_TYPE_CASTER(Type,
const_name<(Type::IsRowMajor) != 0>("scipy.sparse.csr_matrix[",
"scipy.sparse.csc_matrix[")
+ npy_format_descriptor<Scalar>::name + const_name("]"));
};
PYBIND11_NAMESPACE_END(detail)
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)

View File

@ -1,516 +0,0 @@
/*
pybind11/eigen/tensor.h: Transparent conversion for Eigen tensors
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "../numpy.h"
#include "common.h"
#if defined(__GNUC__) && !defined(__clang__) && !defined(__INTEL_COMPILER)
static_assert(__GNUC__ > 5, "Eigen Tensor support in pybind11 requires GCC > 5.0");
#endif
// Disable warnings for Eigen
PYBIND11_WARNING_PUSH
PYBIND11_WARNING_DISABLE_MSVC(4554)
PYBIND11_WARNING_DISABLE_MSVC(4127)
#if defined(__MINGW32__)
PYBIND11_WARNING_DISABLE_GCC("-Wmaybe-uninitialized")
#endif
#include <unsupported/Eigen/CXX11/Tensor>
PYBIND11_WARNING_POP
static_assert(EIGEN_VERSION_AT_LEAST(3, 3, 0),
"Eigen Tensor support in pybind11 requires Eigen >= 3.3.0");
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
PYBIND11_WARNING_DISABLE_MSVC(4127)
PYBIND11_NAMESPACE_BEGIN(detail)
inline bool is_tensor_aligned(const void *data) {
return (reinterpret_cast<std::size_t>(data) % EIGEN_DEFAULT_ALIGN_BYTES) == 0;
}
template <typename T>
constexpr int compute_array_flag_from_tensor() {
static_assert((static_cast<int>(T::Layout) == static_cast<int>(Eigen::RowMajor))
|| (static_cast<int>(T::Layout) == static_cast<int>(Eigen::ColMajor)),
"Layout must be row or column major");
return (static_cast<int>(T::Layout) == static_cast<int>(Eigen::RowMajor)) ? array::c_style
: array::f_style;
}
template <typename T>
struct eigen_tensor_helper {};
template <typename Scalar_, int NumIndices_, int Options_, typename IndexType>
struct eigen_tensor_helper<Eigen::Tensor<Scalar_, NumIndices_, Options_, IndexType>> {
using Type = Eigen::Tensor<Scalar_, NumIndices_, Options_, IndexType>;
using ValidType = void;
static Eigen::DSizes<typename Type::Index, Type::NumIndices> get_shape(const Type &f) {
return f.dimensions();
}
static constexpr bool
is_correct_shape(const Eigen::DSizes<typename Type::Index, Type::NumIndices> & /*shape*/) {
return true;
}
template <typename T>
struct helper {};
template <size_t... Is>
struct helper<index_sequence<Is...>> {
static constexpr auto value = concat(const_name(((void) Is, "?"))...);
};
static constexpr auto dimensions_descriptor
= helper<decltype(make_index_sequence<Type::NumIndices>())>::value;
template <typename... Args>
static Type *alloc(Args &&...args) {
return new Type(std::forward<Args>(args)...);
}
static void free(Type *tensor) { delete tensor; }
};
template <typename Scalar_, typename std::ptrdiff_t... Indices, int Options_, typename IndexType>
struct eigen_tensor_helper<
Eigen::TensorFixedSize<Scalar_, Eigen::Sizes<Indices...>, Options_, IndexType>> {
using Type = Eigen::TensorFixedSize<Scalar_, Eigen::Sizes<Indices...>, Options_, IndexType>;
using ValidType = void;
static constexpr Eigen::DSizes<typename Type::Index, Type::NumIndices>
get_shape(const Type & /*f*/) {
return get_shape();
}
static constexpr Eigen::DSizes<typename Type::Index, Type::NumIndices> get_shape() {
return Eigen::DSizes<typename Type::Index, Type::NumIndices>(Indices...);
}
static bool
is_correct_shape(const Eigen::DSizes<typename Type::Index, Type::NumIndices> &shape) {
return get_shape() == shape;
}
static constexpr auto dimensions_descriptor = concat(const_name<Indices>()...);
template <typename... Args>
static Type *alloc(Args &&...args) {
Eigen::aligned_allocator<Type> allocator;
return ::new (allocator.allocate(1)) Type(std::forward<Args>(args)...);
}
static void free(Type *tensor) {
Eigen::aligned_allocator<Type> allocator;
tensor->~Type();
allocator.deallocate(tensor, 1);
}
};
template <typename Type, bool ShowDetails, bool NeedsWriteable = false>
struct get_tensor_descriptor {
static constexpr auto details
= const_name<NeedsWriteable>(", flags.writeable", "")
+ const_name<static_cast<int>(Type::Layout) == static_cast<int>(Eigen::RowMajor)>(
", flags.c_contiguous", ", flags.f_contiguous");
static constexpr auto value
= const_name("numpy.ndarray[") + npy_format_descriptor<typename Type::Scalar>::name
+ const_name("[") + eigen_tensor_helper<remove_cv_t<Type>>::dimensions_descriptor
+ const_name("]") + const_name<ShowDetails>(details, const_name("")) + const_name("]");
};
// When EIGEN_AVOID_STL_ARRAY is defined, Eigen::DSizes<T, 0> does not have the begin() member
// function. Falling back to a simple loop works around this issue.
//
// We need to disable the type-limits warning for the inner loop when size = 0.
PYBIND11_WARNING_PUSH
PYBIND11_WARNING_DISABLE_GCC("-Wtype-limits")
template <typename T, int size>
std::vector<T> convert_dsizes_to_vector(const Eigen::DSizes<T, size> &arr) {
std::vector<T> result(size);
for (size_t i = 0; i < size; i++) {
result[i] = arr[i];
}
return result;
}
template <typename T, int size>
Eigen::DSizes<T, size> get_shape_for_array(const array &arr) {
Eigen::DSizes<T, size> result;
const T *shape = arr.shape();
for (size_t i = 0; i < size; i++) {
result[i] = shape[i];
}
return result;
}
PYBIND11_WARNING_POP
template <typename Type>
struct type_caster<Type, typename eigen_tensor_helper<Type>::ValidType> {
static_assert(!std::is_pointer<typename Type::Scalar>::value,
PYBIND11_EIGEN_MESSAGE_POINTER_TYPES_ARE_NOT_SUPPORTED);
using Helper = eigen_tensor_helper<Type>;
static constexpr auto temp_name = get_tensor_descriptor<Type, false>::value;
PYBIND11_TYPE_CASTER(Type, temp_name);
bool load(handle src, bool convert) {
if (!convert) {
if (!isinstance<array>(src)) {
return false;
}
array temp = array::ensure(src);
if (!temp) {
return false;
}
if (!temp.dtype().is(dtype::of<typename Type::Scalar>())) {
return false;
}
}
array_t<typename Type::Scalar, compute_array_flag_from_tensor<Type>()> arr(
reinterpret_borrow<object>(src));
if (arr.ndim() != Type::NumIndices) {
return false;
}
auto shape = get_shape_for_array<typename Type::Index, Type::NumIndices>(arr);
if (!Helper::is_correct_shape(shape)) {
return false;
}
#if EIGEN_VERSION_AT_LEAST(3, 4, 0)
auto data_pointer = arr.data();
#else
// Handle Eigen bug
auto data_pointer = const_cast<typename Type::Scalar *>(arr.data());
#endif
if (is_tensor_aligned(arr.data())) {
value = Eigen::TensorMap<const Type, Eigen::Aligned>(data_pointer, shape);
} else {
value = Eigen::TensorMap<const Type>(data_pointer, shape);
}
return true;
}
static handle cast(Type &&src, return_value_policy policy, handle parent) {
if (policy == return_value_policy::reference
|| policy == return_value_policy::reference_internal) {
pybind11_fail("Cannot use a reference return value policy for an rvalue");
}
return cast_impl(&src, return_value_policy::move, parent);
}
static handle cast(const Type &&src, return_value_policy policy, handle parent) {
if (policy == return_value_policy::reference
|| policy == return_value_policy::reference_internal) {
pybind11_fail("Cannot use a reference return value policy for an rvalue");
}
return cast_impl(&src, return_value_policy::move, parent);
}
static handle cast(Type &src, return_value_policy policy, handle parent) {
if (policy == return_value_policy::automatic
|| policy == return_value_policy::automatic_reference) {
policy = return_value_policy::copy;
}
return cast_impl(&src, policy, parent);
}
static handle cast(const Type &src, return_value_policy policy, handle parent) {
if (policy == return_value_policy::automatic
|| policy == return_value_policy::automatic_reference) {
policy = return_value_policy::copy;
}
return cast(&src, policy, parent);
}
static handle cast(Type *src, return_value_policy policy, handle parent) {
if (policy == return_value_policy::automatic) {
policy = return_value_policy::take_ownership;
} else if (policy == return_value_policy::automatic_reference) {
policy = return_value_policy::reference;
}
return cast_impl(src, policy, parent);
}
static handle cast(const Type *src, return_value_policy policy, handle parent) {
if (policy == return_value_policy::automatic) {
policy = return_value_policy::take_ownership;
} else if (policy == return_value_policy::automatic_reference) {
policy = return_value_policy::reference;
}
return cast_impl(src, policy, parent);
}
template <typename C>
static handle cast_impl(C *src, return_value_policy policy, handle parent) {
object parent_object;
bool writeable = false;
switch (policy) {
case return_value_policy::move:
if (std::is_const<C>::value) {
pybind11_fail("Cannot move from a constant reference");
}
src = Helper::alloc(std::move(*src));
parent_object
= capsule(src, [](void *ptr) { Helper::free(reinterpret_cast<Type *>(ptr)); });
writeable = true;
break;
case return_value_policy::take_ownership:
if (std::is_const<C>::value) {
// This cast is ugly, and might be UB in some cases, but we don't have an
// alternative here as we must free that memory
Helper::free(const_cast<Type *>(src));
pybind11_fail("Cannot take ownership of a const reference");
}
parent_object
= capsule(src, [](void *ptr) { Helper::free(reinterpret_cast<Type *>(ptr)); });
writeable = true;
break;
case return_value_policy::copy:
writeable = true;
break;
case return_value_policy::reference:
parent_object = none();
writeable = !std::is_const<C>::value;
break;
case return_value_policy::reference_internal:
// Default should do the right thing
if (!parent) {
pybind11_fail("Cannot use reference internal when there is no parent");
}
parent_object = reinterpret_borrow<object>(parent);
writeable = !std::is_const<C>::value;
break;
default:
pybind11_fail("pybind11 bug in eigen.h, please file a bug report");
}
auto result = array_t<typename Type::Scalar, compute_array_flag_from_tensor<Type>()>(
convert_dsizes_to_vector(Helper::get_shape(*src)), src->data(), parent_object);
if (!writeable) {
array_proxy(result.ptr())->flags &= ~detail::npy_api::NPY_ARRAY_WRITEABLE_;
}
return result.release();
}
};
template <typename StoragePointerType,
bool needs_writeable,
enable_if_t<!needs_writeable, bool> = true>
StoragePointerType get_array_data_for_type(array &arr) {
#if EIGEN_VERSION_AT_LEAST(3, 4, 0)
return reinterpret_cast<StoragePointerType>(arr.data());
#else
// Handle Eigen bug
return reinterpret_cast<StoragePointerType>(const_cast<void *>(arr.data()));
#endif
}
template <typename StoragePointerType,
bool needs_writeable,
enable_if_t<needs_writeable, bool> = true>
StoragePointerType get_array_data_for_type(array &arr) {
return reinterpret_cast<StoragePointerType>(arr.mutable_data());
}
template <typename T, typename = void>
struct get_storage_pointer_type;
template <typename MapType>
struct get_storage_pointer_type<MapType, void_t<typename MapType::StoragePointerType>> {
using SPT = typename MapType::StoragePointerType;
};
template <typename MapType>
struct get_storage_pointer_type<MapType, void_t<typename MapType::PointerArgType>> {
using SPT = typename MapType::PointerArgType;
};
template <typename Type, int Options>
struct type_caster<Eigen::TensorMap<Type, Options>,
typename eigen_tensor_helper<remove_cv_t<Type>>::ValidType> {
static_assert(!std::is_pointer<typename Type::Scalar>::value,
PYBIND11_EIGEN_MESSAGE_POINTER_TYPES_ARE_NOT_SUPPORTED);
using MapType = Eigen::TensorMap<Type, Options>;
using Helper = eigen_tensor_helper<remove_cv_t<Type>>;
bool load(handle src, bool /*convert*/) {
// Note that we have a lot more checks here as we want to make sure to avoid copies
if (!isinstance<array>(src)) {
return false;
}
auto arr = reinterpret_borrow<array>(src);
if ((arr.flags() & compute_array_flag_from_tensor<Type>()) == 0) {
return false;
}
if (!arr.dtype().is(dtype::of<typename Type::Scalar>())) {
return false;
}
if (arr.ndim() != Type::NumIndices) {
return false;
}
constexpr bool is_aligned = (Options & Eigen::Aligned) != 0;
if (is_aligned && !is_tensor_aligned(arr.data())) {
return false;
}
auto shape = get_shape_for_array<typename Type::Index, Type::NumIndices>(arr);
if (!Helper::is_correct_shape(shape)) {
return false;
}
if (needs_writeable && !arr.writeable()) {
return false;
}
auto result = get_array_data_for_type<typename get_storage_pointer_type<MapType>::SPT,
needs_writeable>(arr);
value.reset(new MapType(std::move(result), std::move(shape)));
return true;
}
static handle cast(MapType &&src, return_value_policy policy, handle parent) {
return cast_impl(&src, policy, parent);
}
static handle cast(const MapType &&src, return_value_policy policy, handle parent) {
return cast_impl(&src, policy, parent);
}
static handle cast(MapType &src, return_value_policy policy, handle parent) {
if (policy == return_value_policy::automatic
|| policy == return_value_policy::automatic_reference) {
policy = return_value_policy::copy;
}
return cast_impl(&src, policy, parent);
}
static handle cast(const MapType &src, return_value_policy policy, handle parent) {
if (policy == return_value_policy::automatic
|| policy == return_value_policy::automatic_reference) {
policy = return_value_policy::copy;
}
return cast(&src, policy, parent);
}
static handle cast(MapType *src, return_value_policy policy, handle parent) {
if (policy == return_value_policy::automatic) {
policy = return_value_policy::take_ownership;
} else if (policy == return_value_policy::automatic_reference) {
policy = return_value_policy::reference;
}
return cast_impl(src, policy, parent);
}
static handle cast(const MapType *src, return_value_policy policy, handle parent) {
if (policy == return_value_policy::automatic) {
policy = return_value_policy::take_ownership;
} else if (policy == return_value_policy::automatic_reference) {
policy = return_value_policy::reference;
}
return cast_impl(src, policy, parent);
}
template <typename C>
static handle cast_impl(C *src, return_value_policy policy, handle parent) {
object parent_object;
constexpr bool writeable = !std::is_const<C>::value;
switch (policy) {
case return_value_policy::reference:
parent_object = none();
break;
case return_value_policy::reference_internal:
// Default should do the right thing
if (!parent) {
pybind11_fail("Cannot use reference internal when there is no parent");
}
parent_object = reinterpret_borrow<object>(parent);
break;
case return_value_policy::take_ownership:
delete src;
// fallthrough
default:
// move, take_ownership don't make any sense for a ref/map:
pybind11_fail("Invalid return_value_policy for Eigen Map type, must be either "
"reference or reference_internal");
}
auto result = array_t<typename Type::Scalar, compute_array_flag_from_tensor<Type>()>(
convert_dsizes_to_vector(Helper::get_shape(*src)),
src->data(),
std::move(parent_object));
if (!writeable) {
array_proxy(result.ptr())->flags &= ~detail::npy_api::NPY_ARRAY_WRITEABLE_;
}
return result.release();
}
#if EIGEN_VERSION_AT_LEAST(3, 4, 0)
static constexpr bool needs_writeable = !std::is_const<typename std::remove_pointer<
typename get_storage_pointer_type<MapType>::SPT>::type>::value;
#else
// Handle Eigen bug
static constexpr bool needs_writeable = !std::is_const<Type>::value;
#endif
protected:
// TODO: Move to std::optional once std::optional has more support
std::unique_ptr<MapType> value;
public:
static constexpr auto name = get_tensor_descriptor<Type, true, needs_writeable>::value;
explicit operator MapType *() { return value.get(); }
explicit operator MapType &() { return *value; }
explicit operator MapType &&() && { return std::move(*value); }
template <typename T_>
using cast_op_type = ::pybind11::detail::movable_cast_op_type<T_>;
};
PYBIND11_NAMESPACE_END(detail)
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)

View File

@ -1,316 +0,0 @@
/*
pybind11/embed.h: Support for embedding the interpreter
Copyright (c) 2017 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "pybind11.h"
#include "eval.h"
#include <memory>
#include <vector>
#if defined(PYPY_VERSION)
# error Embedding the interpreter is not supported with PyPy
#endif
#define PYBIND11_EMBEDDED_MODULE_IMPL(name) \
extern "C" PyObject *pybind11_init_impl_##name(); \
extern "C" PyObject *pybind11_init_impl_##name() { return pybind11_init_wrapper_##name(); }
/** \rst
Add a new module to the table of builtins for the interpreter. Must be
defined in global scope. The first macro parameter is the name of the
module (without quotes). The second parameter is the variable which will
be used as the interface to add functions and classes to the module.
.. code-block:: cpp
PYBIND11_EMBEDDED_MODULE(example, m) {
// ... initialize functions and classes here
m.def("foo", []() {
return "Hello, World!";
});
}
\endrst */
#define PYBIND11_EMBEDDED_MODULE(name, variable) \
static ::pybind11::module_::module_def PYBIND11_CONCAT(pybind11_module_def_, name); \
static void PYBIND11_CONCAT(pybind11_init_, name)(::pybind11::module_ &); \
static PyObject PYBIND11_CONCAT(*pybind11_init_wrapper_, name)() { \
auto m = ::pybind11::module_::create_extension_module( \
PYBIND11_TOSTRING(name), nullptr, &PYBIND11_CONCAT(pybind11_module_def_, name)); \
try { \
PYBIND11_CONCAT(pybind11_init_, name)(m); \
return m.ptr(); \
} \
PYBIND11_CATCH_INIT_EXCEPTIONS \
} \
PYBIND11_EMBEDDED_MODULE_IMPL(name) \
::pybind11::detail::embedded_module PYBIND11_CONCAT(pybind11_module_, name)( \
PYBIND11_TOSTRING(name), PYBIND11_CONCAT(pybind11_init_impl_, name)); \
void PYBIND11_CONCAT(pybind11_init_, name)(::pybind11::module_ \
& variable) // NOLINT(bugprone-macro-parentheses)
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
PYBIND11_NAMESPACE_BEGIN(detail)
/// Python 2.7/3.x compatible version of `PyImport_AppendInittab` and error checks.
struct embedded_module {
using init_t = PyObject *(*) ();
embedded_module(const char *name, init_t init) {
if (Py_IsInitialized() != 0) {
pybind11_fail("Can't add new modules after the interpreter has been initialized");
}
auto result = PyImport_AppendInittab(name, init);
if (result == -1) {
pybind11_fail("Insufficient memory to add a new module");
}
}
};
struct wide_char_arg_deleter {
void operator()(wchar_t *ptr) const {
// API docs: https://docs.python.org/3/c-api/sys.html#c.Py_DecodeLocale
PyMem_RawFree(ptr);
}
};
inline wchar_t *widen_chars(const char *safe_arg) {
wchar_t *widened_arg = Py_DecodeLocale(safe_arg, nullptr);
return widened_arg;
}
inline void precheck_interpreter() {
if (Py_IsInitialized() != 0) {
pybind11_fail("The interpreter is already running");
}
}
#if !defined(PYBIND11_PYCONFIG_SUPPORT_PY_VERSION_HEX)
# define PYBIND11_PYCONFIG_SUPPORT_PY_VERSION_HEX (0x03080000)
#endif
#if PY_VERSION_HEX < PYBIND11_PYCONFIG_SUPPORT_PY_VERSION_HEX
inline void initialize_interpreter_pre_pyconfig(bool init_signal_handlers,
int argc,
const char *const *argv,
bool add_program_dir_to_path) {
detail::precheck_interpreter();
Py_InitializeEx(init_signal_handlers ? 1 : 0);
# if defined(WITH_THREAD) && PY_VERSION_HEX < 0x03070000
PyEval_InitThreads();
# endif
// Before it was special-cased in python 3.8, passing an empty or null argv
// caused a segfault, so we have to reimplement the special case ourselves.
bool special_case = (argv == nullptr || argc <= 0);
const char *const empty_argv[]{"\0"};
const char *const *safe_argv = special_case ? empty_argv : argv;
if (special_case) {
argc = 1;
}
auto argv_size = static_cast<size_t>(argc);
// SetArgv* on python 3 takes wchar_t, so we have to convert.
std::unique_ptr<wchar_t *[]> widened_argv(new wchar_t *[argv_size]);
std::vector<std::unique_ptr<wchar_t[], detail::wide_char_arg_deleter>> widened_argv_entries;
widened_argv_entries.reserve(argv_size);
for (size_t ii = 0; ii < argv_size; ++ii) {
widened_argv_entries.emplace_back(detail::widen_chars(safe_argv[ii]));
if (!widened_argv_entries.back()) {
// A null here indicates a character-encoding failure or the python
// interpreter out of memory. Give up.
return;
}
widened_argv[ii] = widened_argv_entries.back().get();
}
auto *pysys_argv = widened_argv.get();
PySys_SetArgvEx(argc, pysys_argv, static_cast<int>(add_program_dir_to_path));
}
#endif
PYBIND11_NAMESPACE_END(detail)
#if PY_VERSION_HEX >= PYBIND11_PYCONFIG_SUPPORT_PY_VERSION_HEX
inline void initialize_interpreter(PyConfig *config,
int argc = 0,
const char *const *argv = nullptr,
bool add_program_dir_to_path = true) {
detail::precheck_interpreter();
PyStatus status = PyConfig_SetBytesArgv(config, argc, const_cast<char *const *>(argv));
if (PyStatus_Exception(status) != 0) {
// A failure here indicates a character-encoding failure or the python
// interpreter out of memory. Give up.
PyConfig_Clear(config);
throw std::runtime_error(PyStatus_IsError(status) != 0 ? status.err_msg
: "Failed to prepare CPython");
}
status = Py_InitializeFromConfig(config);
if (PyStatus_Exception(status) != 0) {
PyConfig_Clear(config);
throw std::runtime_error(PyStatus_IsError(status) != 0 ? status.err_msg
: "Failed to init CPython");
}
if (add_program_dir_to_path) {
PyRun_SimpleString("import sys, os.path; "
"sys.path.insert(0, "
"os.path.abspath(os.path.dirname(sys.argv[0])) "
"if sys.argv and os.path.exists(sys.argv[0]) else '')");
}
PyConfig_Clear(config);
}
#endif
/** \rst
Initialize the Python interpreter. No other pybind11 or CPython API functions can be
called before this is done; with the exception of `PYBIND11_EMBEDDED_MODULE`. The
optional `init_signal_handlers` parameter can be used to skip the registration of
signal handlers (see the `Python documentation`_ for details). Calling this function
again after the interpreter has already been initialized is a fatal error.
If initializing the Python interpreter fails, then the program is terminated. (This
is controlled by the CPython runtime and is an exception to pybind11's normal behavior
of throwing exceptions on errors.)
The remaining optional parameters, `argc`, `argv`, and `add_program_dir_to_path` are
used to populate ``sys.argv`` and ``sys.path``.
See the |PySys_SetArgvEx documentation|_ for details.
.. _Python documentation: https://docs.python.org/3/c-api/init.html#c.Py_InitializeEx
.. |PySys_SetArgvEx documentation| replace:: ``PySys_SetArgvEx`` documentation
.. _PySys_SetArgvEx documentation: https://docs.python.org/3/c-api/init.html#c.PySys_SetArgvEx
\endrst */
inline void initialize_interpreter(bool init_signal_handlers = true,
int argc = 0,
const char *const *argv = nullptr,
bool add_program_dir_to_path = true) {
#if PY_VERSION_HEX < PYBIND11_PYCONFIG_SUPPORT_PY_VERSION_HEX
detail::initialize_interpreter_pre_pyconfig(
init_signal_handlers, argc, argv, add_program_dir_to_path);
#else
PyConfig config;
PyConfig_InitPythonConfig(&config);
// See PR #4473 for background
config.parse_argv = 0;
config.install_signal_handlers = init_signal_handlers ? 1 : 0;
initialize_interpreter(&config, argc, argv, add_program_dir_to_path);
#endif
}
/** \rst
Shut down the Python interpreter. No pybind11 or CPython API functions can be called
after this. In addition, pybind11 objects must not outlive the interpreter:
.. code-block:: cpp
{ // BAD
py::initialize_interpreter();
auto hello = py::str("Hello, World!");
py::finalize_interpreter();
} // <-- BOOM, hello's destructor is called after interpreter shutdown
{ // GOOD
py::initialize_interpreter();
{ // scoped
auto hello = py::str("Hello, World!");
} // <-- OK, hello is cleaned up properly
py::finalize_interpreter();
}
{ // BETTER
py::scoped_interpreter guard{};
auto hello = py::str("Hello, World!");
}
.. warning::
The interpreter can be restarted by calling `initialize_interpreter` again.
Modules created using pybind11 can be safely re-initialized. However, Python
itself cannot completely unload binary extension modules and there are several
caveats with regard to interpreter restarting. All the details can be found
in the CPython documentation. In short, not all interpreter memory may be
freed, either due to reference cycles or user-created global data.
\endrst */
inline void finalize_interpreter() {
// Get the internals pointer (without creating it if it doesn't exist). It's possible for the
// internals to be created during Py_Finalize() (e.g. if a py::capsule calls `get_internals()`
// during destruction), so we get the pointer-pointer here and check it after Py_Finalize().
detail::internals **internals_ptr_ptr = detail::get_internals_pp();
// It could also be stashed in state_dict, so look there too:
if (object internals_obj
= get_internals_obj_from_state_dict(detail::get_python_state_dict())) {
internals_ptr_ptr = detail::get_internals_pp_from_capsule(internals_obj);
}
// Local internals contains data managed by the current interpreter, so we must clear them to
// avoid undefined behaviors when initializing another interpreter
detail::get_local_internals().registered_types_cpp.clear();
detail::get_local_internals().registered_exception_translators.clear();
Py_Finalize();
if (internals_ptr_ptr) {
delete *internals_ptr_ptr;
*internals_ptr_ptr = nullptr;
}
}
/** \rst
Scope guard version of `initialize_interpreter` and `finalize_interpreter`.
This a move-only guard and only a single instance can exist.
See `initialize_interpreter` for a discussion of its constructor arguments.
.. code-block:: cpp
#include <pybind11/embed.h>
int main() {
py::scoped_interpreter guard{};
py::print(Hello, World!);
} // <-- interpreter shutdown
\endrst */
class scoped_interpreter {
public:
explicit scoped_interpreter(bool init_signal_handlers = true,
int argc = 0,
const char *const *argv = nullptr,
bool add_program_dir_to_path = true) {
initialize_interpreter(init_signal_handlers, argc, argv, add_program_dir_to_path);
}
#if PY_VERSION_HEX >= PYBIND11_PYCONFIG_SUPPORT_PY_VERSION_HEX
explicit scoped_interpreter(PyConfig *config,
int argc = 0,
const char *const *argv = nullptr,
bool add_program_dir_to_path = true) {
initialize_interpreter(config, argc, argv, add_program_dir_to_path);
}
#endif
scoped_interpreter(const scoped_interpreter &) = delete;
scoped_interpreter(scoped_interpreter &&other) noexcept { other.is_valid = false; }
scoped_interpreter &operator=(const scoped_interpreter &) = delete;
scoped_interpreter &operator=(scoped_interpreter &&) = delete;
~scoped_interpreter() {
if (is_valid) {
finalize_interpreter();
}
}
private:
bool is_valid = true;
};
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)

View File

@ -1,156 +0,0 @@
/*
pybind11/eval.h: Support for evaluating Python expressions and statements
from strings and files
Copyright (c) 2016 Klemens Morgenstern <klemens.morgenstern@ed-chemnitz.de> and
Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "pybind11.h"
#include <utility>
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
PYBIND11_NAMESPACE_BEGIN(detail)
inline void ensure_builtins_in_globals(object &global) {
#if defined(PYPY_VERSION) || PY_VERSION_HEX < 0x03080000
// Running exec and eval adds `builtins` module under `__builtins__` key to
// globals if not yet present. Python 3.8 made PyRun_String behave
// similarly. Let's also do that for older versions, for consistency. This
// was missing from PyPy3.8 7.3.7.
if (!global.contains("__builtins__"))
global["__builtins__"] = module_::import(PYBIND11_BUILTINS_MODULE);
#else
(void) global;
#endif
}
PYBIND11_NAMESPACE_END(detail)
enum eval_mode {
/// Evaluate a string containing an isolated expression
eval_expr,
/// Evaluate a string containing a single statement. Returns \c none
eval_single_statement,
/// Evaluate a string containing a sequence of statement. Returns \c none
eval_statements
};
template <eval_mode mode = eval_expr>
object eval(const str &expr, object global = globals(), object local = object()) {
if (!local) {
local = global;
}
detail::ensure_builtins_in_globals(global);
/* PyRun_String does not accept a PyObject / encoding specifier,
this seems to be the only alternative */
std::string buffer = "# -*- coding: utf-8 -*-\n" + (std::string) expr;
int start = 0;
switch (mode) {
case eval_expr:
start = Py_eval_input;
break;
case eval_single_statement:
start = Py_single_input;
break;
case eval_statements:
start = Py_file_input;
break;
default:
pybind11_fail("invalid evaluation mode");
}
PyObject *result = PyRun_String(buffer.c_str(), start, global.ptr(), local.ptr());
if (!result) {
throw error_already_set();
}
return reinterpret_steal<object>(result);
}
template <eval_mode mode = eval_expr, size_t N>
object eval(const char (&s)[N], object global = globals(), object local = object()) {
/* Support raw string literals by removing common leading whitespace */
auto expr = (s[0] == '\n') ? str(module_::import("textwrap").attr("dedent")(s)) : str(s);
return eval<mode>(expr, std::move(global), std::move(local));
}
inline void exec(const str &expr, object global = globals(), object local = object()) {
eval<eval_statements>(expr, std::move(global), std::move(local));
}
template <size_t N>
void exec(const char (&s)[N], object global = globals(), object local = object()) {
eval<eval_statements>(s, std::move(global), std::move(local));
}
#if defined(PYPY_VERSION)
template <eval_mode mode = eval_statements>
object eval_file(str, object, object) {
pybind11_fail("eval_file not supported in PyPy3. Use eval");
}
template <eval_mode mode = eval_statements>
object eval_file(str, object) {
pybind11_fail("eval_file not supported in PyPy3. Use eval");
}
template <eval_mode mode = eval_statements>
object eval_file(str) {
pybind11_fail("eval_file not supported in PyPy3. Use eval");
}
#else
template <eval_mode mode = eval_statements>
object eval_file(str fname, object global = globals(), object local = object()) {
if (!local) {
local = global;
}
detail::ensure_builtins_in_globals(global);
int start = 0;
switch (mode) {
case eval_expr:
start = Py_eval_input;
break;
case eval_single_statement:
start = Py_single_input;
break;
case eval_statements:
start = Py_file_input;
break;
default:
pybind11_fail("invalid evaluation mode");
}
int closeFile = 1;
std::string fname_str = (std::string) fname;
FILE *f = _Py_fopen_obj(fname.ptr(), "r");
if (!f) {
PyErr_Clear();
pybind11_fail("File \"" + fname_str + "\" could not be opened!");
}
if (!global.contains("__file__")) {
global["__file__"] = std::move(fname);
}
PyObject *result
= PyRun_FileEx(f, fname_str.c_str(), start, global.ptr(), local.ptr(), closeFile);
if (!result) {
throw error_already_set();
}
return reinterpret_steal<object>(result);
}
#endif
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)

View File

@ -1,137 +0,0 @@
/*
pybind11/functional.h: std::function<> support
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "pybind11.h"
#include <functional>
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
PYBIND11_NAMESPACE_BEGIN(detail)
template <typename Return, typename... Args>
struct type_caster<std::function<Return(Args...)>> {
using type = std::function<Return(Args...)>;
using retval_type = conditional_t<std::is_same<Return, void>::value, void_type, Return>;
using function_type = Return (*)(Args...);
public:
bool load(handle src, bool convert) {
if (src.is_none()) {
// Defer accepting None to other overloads (if we aren't in convert mode):
if (!convert) {
return false;
}
return true;
}
if (!isinstance<function>(src)) {
return false;
}
auto func = reinterpret_borrow<function>(src);
/*
When passing a C++ function as an argument to another C++
function via Python, every function call would normally involve
a full C++ -> Python -> C++ roundtrip, which can be prohibitive.
Here, we try to at least detect the case where the function is
stateless (i.e. function pointer or lambda function without
captured variables), in which case the roundtrip can be avoided.
*/
if (auto cfunc = func.cpp_function()) {
auto *cfunc_self = PyCFunction_GET_SELF(cfunc.ptr());
if (cfunc_self == nullptr) {
PyErr_Clear();
} else if (isinstance<capsule>(cfunc_self)) {
auto c = reinterpret_borrow<capsule>(cfunc_self);
function_record *rec = nullptr;
// Check that we can safely reinterpret the capsule into a function_record
if (detail::is_function_record_capsule(c)) {
rec = c.get_pointer<function_record>();
}
while (rec != nullptr) {
if (rec->is_stateless
&& same_type(typeid(function_type),
*reinterpret_cast<const std::type_info *>(rec->data[1]))) {
struct capture {
function_type f;
};
value = ((capture *) &rec->data)->f;
return true;
}
rec = rec->next;
}
}
// PYPY segfaults here when passing builtin function like sum.
// Raising an fail exception here works to prevent the segfault, but only on gcc.
// See PR #1413 for full details
}
// ensure GIL is held during functor destruction
struct func_handle {
function f;
#if !(defined(_MSC_VER) && _MSC_VER == 1916 && defined(PYBIND11_CPP17))
// This triggers a syntax error under very special conditions (very weird indeed).
explicit
#endif
func_handle(function &&f_) noexcept
: f(std::move(f_)) {
}
func_handle(const func_handle &f_) { operator=(f_); }
func_handle &operator=(const func_handle &f_) {
gil_scoped_acquire acq;
f = f_.f;
return *this;
}
~func_handle() {
gil_scoped_acquire acq;
function kill_f(std::move(f));
}
};
// to emulate 'move initialization capture' in C++11
struct func_wrapper {
func_handle hfunc;
explicit func_wrapper(func_handle &&hf) noexcept : hfunc(std::move(hf)) {}
Return operator()(Args... args) const {
gil_scoped_acquire acq;
// casts the returned object as a rvalue to the return type
return hfunc.f(std::forward<Args>(args)...).template cast<Return>();
}
};
value = func_wrapper(func_handle(std::move(func)));
return true;
}
template <typename Func>
static handle cast(Func &&f_, return_value_policy policy, handle /* parent */) {
if (!f_) {
return none().release();
}
auto result = f_.template target<function_type>();
if (result) {
return cpp_function(*result, policy).release();
}
return cpp_function(std::forward<Func>(f_), policy).release();
}
PYBIND11_TYPE_CASTER(type,
const_name("Callable[[") + concat(make_caster<Args>::name...)
+ const_name("], ") + make_caster<retval_type>::name
+ const_name("]"));
};
PYBIND11_NAMESPACE_END(detail)
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)

View File

@ -1,239 +0,0 @@
/*
pybind11/gil.h: RAII helpers for managing the GIL
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "detail/common.h"
#if defined(WITH_THREAD) && !defined(PYBIND11_SIMPLE_GIL_MANAGEMENT)
# include "detail/internals.h"
#endif
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
PYBIND11_NAMESPACE_BEGIN(detail)
// forward declarations
PyThreadState *get_thread_state_unchecked();
PYBIND11_NAMESPACE_END(detail)
#if defined(WITH_THREAD)
# if !defined(PYBIND11_SIMPLE_GIL_MANAGEMENT)
/* The functions below essentially reproduce the PyGILState_* API using a RAII
* pattern, but there are a few important differences:
*
* 1. When acquiring the GIL from an non-main thread during the finalization
* phase, the GILState API blindly terminates the calling thread, which
* is often not what is wanted. This API does not do this.
*
* 2. The gil_scoped_release function can optionally cut the relationship
* of a PyThreadState and its associated thread, which allows moving it to
* another thread (this is a fairly rare/advanced use case).
*
* 3. The reference count of an acquired thread state can be controlled. This
* can be handy to prevent cases where callbacks issued from an external
* thread would otherwise constantly construct and destroy thread state data
* structures.
*
* See the Python bindings of NanoGUI (http://github.com/wjakob/nanogui) for an
* example which uses features 2 and 3 to migrate the Python thread of
* execution to another thread (to run the event loop on the original thread,
* in this case).
*/
class gil_scoped_acquire {
public:
PYBIND11_NOINLINE gil_scoped_acquire() {
auto &internals = detail::get_internals();
tstate = (PyThreadState *) PYBIND11_TLS_GET_VALUE(internals.tstate);
if (!tstate) {
/* Check if the GIL was acquired using the PyGILState_* API instead (e.g. if
calling from a Python thread). Since we use a different key, this ensures
we don't create a new thread state and deadlock in PyEval_AcquireThread
below. Note we don't save this state with internals.tstate, since we don't
create it we would fail to clear it (its reference count should be > 0). */
tstate = PyGILState_GetThisThreadState();
}
if (!tstate) {
tstate = PyThreadState_New(internals.istate);
# if defined(PYBIND11_DETAILED_ERROR_MESSAGES)
if (!tstate) {
pybind11_fail("scoped_acquire: could not create thread state!");
}
# endif
tstate->gilstate_counter = 0;
PYBIND11_TLS_REPLACE_VALUE(internals.tstate, tstate);
} else {
release = detail::get_thread_state_unchecked() != tstate;
}
if (release) {
PyEval_AcquireThread(tstate);
}
inc_ref();
}
gil_scoped_acquire(const gil_scoped_acquire &) = delete;
gil_scoped_acquire &operator=(const gil_scoped_acquire &) = delete;
void inc_ref() { ++tstate->gilstate_counter; }
PYBIND11_NOINLINE void dec_ref() {
--tstate->gilstate_counter;
# if defined(PYBIND11_DETAILED_ERROR_MESSAGES)
if (detail::get_thread_state_unchecked() != tstate) {
pybind11_fail("scoped_acquire::dec_ref(): thread state must be current!");
}
if (tstate->gilstate_counter < 0) {
pybind11_fail("scoped_acquire::dec_ref(): reference count underflow!");
}
# endif
if (tstate->gilstate_counter == 0) {
# if defined(PYBIND11_DETAILED_ERROR_MESSAGES)
if (!release) {
pybind11_fail("scoped_acquire::dec_ref(): internal error!");
}
# endif
PyThreadState_Clear(tstate);
if (active) {
PyThreadState_DeleteCurrent();
}
PYBIND11_TLS_DELETE_VALUE(detail::get_internals().tstate);
release = false;
}
}
/// This method will disable the PyThreadState_DeleteCurrent call and the
/// GIL won't be acquired. This method should be used if the interpreter
/// could be shutting down when this is called, as thread deletion is not
/// allowed during shutdown. Check _Py_IsFinalizing() on Python 3.7+, and
/// protect subsequent code.
PYBIND11_NOINLINE void disarm() { active = false; }
PYBIND11_NOINLINE ~gil_scoped_acquire() {
dec_ref();
if (release) {
PyEval_SaveThread();
}
}
private:
PyThreadState *tstate = nullptr;
bool release = true;
bool active = true;
};
class gil_scoped_release {
public:
explicit gil_scoped_release(bool disassoc = false) : disassoc(disassoc) {
// `get_internals()` must be called here unconditionally in order to initialize
// `internals.tstate` for subsequent `gil_scoped_acquire` calls. Otherwise, an
// initialization race could occur as multiple threads try `gil_scoped_acquire`.
auto &internals = detail::get_internals();
// NOLINTNEXTLINE(cppcoreguidelines-prefer-member-initializer)
tstate = PyEval_SaveThread();
if (disassoc) {
// Python >= 3.7 can remove this, it's an int before 3.7
// NOLINTNEXTLINE(readability-qualified-auto)
auto key = internals.tstate;
PYBIND11_TLS_DELETE_VALUE(key);
}
}
gil_scoped_release(const gil_scoped_release &) = delete;
gil_scoped_release &operator=(const gil_scoped_release &) = delete;
/// This method will disable the PyThreadState_DeleteCurrent call and the
/// GIL won't be acquired. This method should be used if the interpreter
/// could be shutting down when this is called, as thread deletion is not
/// allowed during shutdown. Check _Py_IsFinalizing() on Python 3.7+, and
/// protect subsequent code.
PYBIND11_NOINLINE void disarm() { active = false; }
~gil_scoped_release() {
if (!tstate) {
return;
}
// `PyEval_RestoreThread()` should not be called if runtime is finalizing
if (active) {
PyEval_RestoreThread(tstate);
}
if (disassoc) {
// Python >= 3.7 can remove this, it's an int before 3.7
// NOLINTNEXTLINE(readability-qualified-auto)
auto key = detail::get_internals().tstate;
PYBIND11_TLS_REPLACE_VALUE(key, tstate);
}
}
private:
PyThreadState *tstate;
bool disassoc;
bool active = true;
};
# else // PYBIND11_SIMPLE_GIL_MANAGEMENT
class gil_scoped_acquire {
PyGILState_STATE state;
public:
gil_scoped_acquire() : state{PyGILState_Ensure()} {}
gil_scoped_acquire(const gil_scoped_acquire &) = delete;
gil_scoped_acquire &operator=(const gil_scoped_acquire &) = delete;
~gil_scoped_acquire() { PyGILState_Release(state); }
void disarm() {}
};
class gil_scoped_release {
PyThreadState *state;
public:
gil_scoped_release() : state{PyEval_SaveThread()} {}
gil_scoped_release(const gil_scoped_release &) = delete;
gil_scoped_release &operator=(const gil_scoped_release &) = delete;
~gil_scoped_release() { PyEval_RestoreThread(state); }
void disarm() {}
};
# endif // PYBIND11_SIMPLE_GIL_MANAGEMENT
#else // WITH_THREAD
class gil_scoped_acquire {
public:
gil_scoped_acquire() {
// Trick to suppress `unused variable` error messages (at call sites).
(void) (this != (this + 1));
}
gil_scoped_acquire(const gil_scoped_acquire &) = delete;
gil_scoped_acquire &operator=(const gil_scoped_acquire &) = delete;
void disarm() {}
};
class gil_scoped_release {
public:
gil_scoped_release() {
// Trick to suppress `unused variable` error messages (at call sites).
(void) (this != (this + 1));
}
gil_scoped_release(const gil_scoped_release &) = delete;
gil_scoped_release &operator=(const gil_scoped_release &) = delete;
void disarm() {}
};
#endif // WITH_THREAD
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)

View File

@ -1,265 +0,0 @@
/*
pybind11/iostream.h -- Tools to assist with redirecting cout and cerr to Python
Copyright (c) 2017 Henry F. Schreiner
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
WARNING: The implementation in this file is NOT thread safe. Multiple
threads writing to a redirected ostream concurrently cause data races
and potentially buffer overflows. Therefore it is currently a requirement
that all (possibly) concurrent redirected ostream writes are protected by
a mutex.
#HelpAppreciated: Work on iostream.h thread safety.
For more background see the discussions under
https://github.com/pybind/pybind11/pull/2982 and
https://github.com/pybind/pybind11/pull/2995.
*/
#pragma once
#include "pybind11.h"
#include <algorithm>
#include <cstring>
#include <iostream>
#include <iterator>
#include <memory>
#include <ostream>
#include <streambuf>
#include <string>
#include <utility>
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
PYBIND11_NAMESPACE_BEGIN(detail)
// Buffer that writes to Python instead of C++
class pythonbuf : public std::streambuf {
private:
using traits_type = std::streambuf::traits_type;
const size_t buf_size;
std::unique_ptr<char[]> d_buffer;
object pywrite;
object pyflush;
int overflow(int c) override {
if (!traits_type::eq_int_type(c, traits_type::eof())) {
*pptr() = traits_type::to_char_type(c);
pbump(1);
}
return sync() == 0 ? traits_type::not_eof(c) : traits_type::eof();
}
// Computes how many bytes at the end of the buffer are part of an
// incomplete sequence of UTF-8 bytes.
// Precondition: pbase() < pptr()
size_t utf8_remainder() const {
const auto rbase = std::reverse_iterator<char *>(pbase());
const auto rpptr = std::reverse_iterator<char *>(pptr());
auto is_ascii = [](char c) { return (static_cast<unsigned char>(c) & 0x80) == 0x00; };
auto is_leading = [](char c) { return (static_cast<unsigned char>(c) & 0xC0) == 0xC0; };
auto is_leading_2b = [](char c) { return static_cast<unsigned char>(c) <= 0xDF; };
auto is_leading_3b = [](char c) { return static_cast<unsigned char>(c) <= 0xEF; };
// If the last character is ASCII, there are no incomplete code points
if (is_ascii(*rpptr)) {
return 0;
}
// Otherwise, work back from the end of the buffer and find the first
// UTF-8 leading byte
const auto rpend = rbase - rpptr >= 3 ? rpptr + 3 : rbase;
const auto leading = std::find_if(rpptr, rpend, is_leading);
if (leading == rbase) {
return 0;
}
const auto dist = static_cast<size_t>(leading - rpptr);
size_t remainder = 0;
if (dist == 0) {
remainder = 1; // 1-byte code point is impossible
} else if (dist == 1) {
remainder = is_leading_2b(*leading) ? 0 : dist + 1;
} else if (dist == 2) {
remainder = is_leading_3b(*leading) ? 0 : dist + 1;
}
// else if (dist >= 3), at least 4 bytes before encountering an UTF-8
// leading byte, either no remainder or invalid UTF-8.
// Invalid UTF-8 will cause an exception later when converting
// to a Python string, so that's not handled here.
return remainder;
}
// This function must be non-virtual to be called in a destructor.
int _sync() {
if (pbase() != pptr()) { // If buffer is not empty
gil_scoped_acquire tmp;
// This subtraction cannot be negative, so dropping the sign.
auto size = static_cast<size_t>(pptr() - pbase());
size_t remainder = utf8_remainder();
if (size > remainder) {
str line(pbase(), size - remainder);
pywrite(std::move(line));
pyflush();
}
// Copy the remainder at the end of the buffer to the beginning:
if (remainder > 0) {
std::memmove(pbase(), pptr() - remainder, remainder);
}
setp(pbase(), epptr());
pbump(static_cast<int>(remainder));
}
return 0;
}
int sync() override { return _sync(); }
public:
explicit pythonbuf(const object &pyostream, size_t buffer_size = 1024)
: buf_size(buffer_size), d_buffer(new char[buf_size]), pywrite(pyostream.attr("write")),
pyflush(pyostream.attr("flush")) {
setp(d_buffer.get(), d_buffer.get() + buf_size - 1);
}
pythonbuf(pythonbuf &&) = default;
/// Sync before destroy
~pythonbuf() override { _sync(); }
};
PYBIND11_NAMESPACE_END(detail)
/** \rst
This a move-only guard that redirects output.
.. code-block:: cpp
#include <pybind11/iostream.h>
...
{
py::scoped_ostream_redirect output;
std::cout << "Hello, World!"; // Python stdout
} // <-- return std::cout to normal
You can explicitly pass the c++ stream and the python object,
for example to guard stderr instead.
.. code-block:: cpp
{
py::scoped_ostream_redirect output{
std::cerr, py::module::import("sys").attr("stderr")};
std::cout << "Hello, World!";
}
\endrst */
class scoped_ostream_redirect {
protected:
std::streambuf *old;
std::ostream &costream;
detail::pythonbuf buffer;
public:
explicit scoped_ostream_redirect(std::ostream &costream = std::cout,
const object &pyostream
= module_::import("sys").attr("stdout"))
: costream(costream), buffer(pyostream) {
old = costream.rdbuf(&buffer);
}
~scoped_ostream_redirect() { costream.rdbuf(old); }
scoped_ostream_redirect(const scoped_ostream_redirect &) = delete;
scoped_ostream_redirect(scoped_ostream_redirect &&other) = default;
scoped_ostream_redirect &operator=(const scoped_ostream_redirect &) = delete;
scoped_ostream_redirect &operator=(scoped_ostream_redirect &&) = delete;
};
/** \rst
Like `scoped_ostream_redirect`, but redirects cerr by default. This class
is provided primary to make ``py::call_guard`` easier to make.
.. code-block:: cpp
m.def("noisy_func", &noisy_func,
py::call_guard<scoped_ostream_redirect,
scoped_estream_redirect>());
\endrst */
class scoped_estream_redirect : public scoped_ostream_redirect {
public:
explicit scoped_estream_redirect(std::ostream &costream = std::cerr,
const object &pyostream
= module_::import("sys").attr("stderr"))
: scoped_ostream_redirect(costream, pyostream) {}
};
PYBIND11_NAMESPACE_BEGIN(detail)
// Class to redirect output as a context manager. C++ backend.
class OstreamRedirect {
bool do_stdout_;
bool do_stderr_;
std::unique_ptr<scoped_ostream_redirect> redirect_stdout;
std::unique_ptr<scoped_estream_redirect> redirect_stderr;
public:
explicit OstreamRedirect(bool do_stdout = true, bool do_stderr = true)
: do_stdout_(do_stdout), do_stderr_(do_stderr) {}
void enter() {
if (do_stdout_) {
redirect_stdout.reset(new scoped_ostream_redirect());
}
if (do_stderr_) {
redirect_stderr.reset(new scoped_estream_redirect());
}
}
void exit() {
redirect_stdout.reset();
redirect_stderr.reset();
}
};
PYBIND11_NAMESPACE_END(detail)
/** \rst
This is a helper function to add a C++ redirect context manager to Python
instead of using a C++ guard. To use it, add the following to your binding code:
.. code-block:: cpp
#include <pybind11/iostream.h>
...
py::add_ostream_redirect(m, "ostream_redirect");
You now have a Python context manager that redirects your output:
.. code-block:: python
with m.ostream_redirect():
m.print_to_cout_function()
This manager can optionally be told which streams to operate on:
.. code-block:: python
with m.ostream_redirect(stdout=true, stderr=true):
m.noisy_function_with_error_printing()
\endrst */
inline class_<detail::OstreamRedirect>
add_ostream_redirect(module_ m, const std::string &name = "ostream_redirect") {
return class_<detail::OstreamRedirect>(std::move(m), name.c_str(), module_local())
.def(init<bool, bool>(), arg("stdout") = true, arg("stderr") = true)
.def("__enter__", &detail::OstreamRedirect::enter)
.def("__exit__", [](detail::OstreamRedirect &self_, const args &) { self_.exit(); });
}
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)

File diff suppressed because it is too large Load Diff

View File

@ -1,202 +0,0 @@
/*
pybind11/operator.h: Metatemplates for operator overloading
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "pybind11.h"
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
PYBIND11_NAMESPACE_BEGIN(detail)
/// Enumeration with all supported operator types
enum op_id : int {
op_add,
op_sub,
op_mul,
op_div,
op_mod,
op_divmod,
op_pow,
op_lshift,
op_rshift,
op_and,
op_xor,
op_or,
op_neg,
op_pos,
op_abs,
op_invert,
op_int,
op_long,
op_float,
op_str,
op_cmp,
op_gt,
op_ge,
op_lt,
op_le,
op_eq,
op_ne,
op_iadd,
op_isub,
op_imul,
op_idiv,
op_imod,
op_ilshift,
op_irshift,
op_iand,
op_ixor,
op_ior,
op_complex,
op_bool,
op_nonzero,
op_repr,
op_truediv,
op_itruediv,
op_hash
};
enum op_type : int {
op_l, /* base type on left */
op_r, /* base type on right */
op_u /* unary operator */
};
struct self_t {};
static const self_t self = self_t();
/// Type for an unused type slot
struct undefined_t {};
/// Don't warn about an unused variable
inline self_t __self() { return self; }
/// base template of operator implementations
template <op_id, op_type, typename B, typename L, typename R>
struct op_impl {};
/// Operator implementation generator
template <op_id id, op_type ot, typename L, typename R>
struct op_ {
static constexpr bool op_enable_if_hook = true;
template <typename Class, typename... Extra>
void execute(Class &cl, const Extra &...extra) const {
using Base = typename Class::type;
using L_type = conditional_t<std::is_same<L, self_t>::value, Base, L>;
using R_type = conditional_t<std::is_same<R, self_t>::value, Base, R>;
using op = op_impl<id, ot, Base, L_type, R_type>;
cl.def(op::name(), &op::execute, is_operator(), extra...);
}
template <typename Class, typename... Extra>
void execute_cast(Class &cl, const Extra &...extra) const {
using Base = typename Class::type;
using L_type = conditional_t<std::is_same<L, self_t>::value, Base, L>;
using R_type = conditional_t<std::is_same<R, self_t>::value, Base, R>;
using op = op_impl<id, ot, Base, L_type, R_type>;
cl.def(op::name(), &op::execute_cast, is_operator(), extra...);
}
};
#define PYBIND11_BINARY_OPERATOR(id, rid, op, expr) \
template <typename B, typename L, typename R> \
struct op_impl<op_##id, op_l, B, L, R> { \
static char const *name() { return "__" #id "__"; } \
static auto execute(const L &l, const R &r) -> decltype(expr) { return (expr); } \
static B execute_cast(const L &l, const R &r) { return B(expr); } \
}; \
template <typename B, typename L, typename R> \
struct op_impl<op_##id, op_r, B, L, R> { \
static char const *name() { return "__" #rid "__"; } \
static auto execute(const R &r, const L &l) -> decltype(expr) { return (expr); } \
static B execute_cast(const R &r, const L &l) { return B(expr); } \
}; \
inline op_<op_##id, op_l, self_t, self_t> op(const self_t &, const self_t &) { \
return op_<op_##id, op_l, self_t, self_t>(); \
} \
template <typename T> \
op_<op_##id, op_l, self_t, T> op(const self_t &, const T &) { \
return op_<op_##id, op_l, self_t, T>(); \
} \
template <typename T> \
op_<op_##id, op_r, T, self_t> op(const T &, const self_t &) { \
return op_<op_##id, op_r, T, self_t>(); \
}
#define PYBIND11_INPLACE_OPERATOR(id, op, expr) \
template <typename B, typename L, typename R> \
struct op_impl<op_##id, op_l, B, L, R> { \
static char const *name() { return "__" #id "__"; } \
static auto execute(L &l, const R &r) -> decltype(expr) { return expr; } \
static B execute_cast(L &l, const R &r) { return B(expr); } \
}; \
template <typename T> \
op_<op_##id, op_l, self_t, T> op(const self_t &, const T &) { \
return op_<op_##id, op_l, self_t, T>(); \
}
#define PYBIND11_UNARY_OPERATOR(id, op, expr) \
template <typename B, typename L> \
struct op_impl<op_##id, op_u, B, L, undefined_t> { \
static char const *name() { return "__" #id "__"; } \
static auto execute(const L &l) -> decltype(expr) { return expr; } \
static B execute_cast(const L &l) { return B(expr); } \
}; \
inline op_<op_##id, op_u, self_t, undefined_t> op(const self_t &) { \
return op_<op_##id, op_u, self_t, undefined_t>(); \
}
PYBIND11_BINARY_OPERATOR(sub, rsub, operator-, l - r)
PYBIND11_BINARY_OPERATOR(add, radd, operator+, l + r)
PYBIND11_BINARY_OPERATOR(mul, rmul, operator*, l *r)
PYBIND11_BINARY_OPERATOR(truediv, rtruediv, operator/, l / r)
PYBIND11_BINARY_OPERATOR(mod, rmod, operator%, l % r)
PYBIND11_BINARY_OPERATOR(lshift, rlshift, operator<<, l << r)
PYBIND11_BINARY_OPERATOR(rshift, rrshift, operator>>, l >> r)
PYBIND11_BINARY_OPERATOR(and, rand, operator&, l &r)
PYBIND11_BINARY_OPERATOR(xor, rxor, operator^, l ^ r)
PYBIND11_BINARY_OPERATOR(eq, eq, operator==, l == r)
PYBIND11_BINARY_OPERATOR(ne, ne, operator!=, l != r)
PYBIND11_BINARY_OPERATOR(or, ror, operator|, l | r)
PYBIND11_BINARY_OPERATOR(gt, lt, operator>, l > r)
PYBIND11_BINARY_OPERATOR(ge, le, operator>=, l >= r)
PYBIND11_BINARY_OPERATOR(lt, gt, operator<, l < r)
PYBIND11_BINARY_OPERATOR(le, ge, operator<=, l <= r)
// PYBIND11_BINARY_OPERATOR(pow, rpow, pow, std::pow(l, r))
PYBIND11_INPLACE_OPERATOR(iadd, operator+=, l += r)
PYBIND11_INPLACE_OPERATOR(isub, operator-=, l -= r)
PYBIND11_INPLACE_OPERATOR(imul, operator*=, l *= r)
PYBIND11_INPLACE_OPERATOR(itruediv, operator/=, l /= r)
PYBIND11_INPLACE_OPERATOR(imod, operator%=, l %= r)
PYBIND11_INPLACE_OPERATOR(ilshift, operator<<=, l <<= r)
PYBIND11_INPLACE_OPERATOR(irshift, operator>>=, l >>= r)
PYBIND11_INPLACE_OPERATOR(iand, operator&=, l &= r)
PYBIND11_INPLACE_OPERATOR(ixor, operator^=, l ^= r)
PYBIND11_INPLACE_OPERATOR(ior, operator|=, l |= r)
PYBIND11_UNARY_OPERATOR(neg, operator-, -l)
PYBIND11_UNARY_OPERATOR(pos, operator+, +l)
// WARNING: This usage of `abs` should only be done for existing STL overloads.
// Adding overloads directly in to the `std::` namespace is advised against:
// https://en.cppreference.com/w/cpp/language/extending_std
PYBIND11_UNARY_OPERATOR(abs, abs, std::abs(l))
PYBIND11_UNARY_OPERATOR(hash, hash, std::hash<L>()(l))
PYBIND11_UNARY_OPERATOR(invert, operator~, (~l))
PYBIND11_UNARY_OPERATOR(bool, operator!, !!l)
PYBIND11_UNARY_OPERATOR(int, int_, (int) l)
PYBIND11_UNARY_OPERATOR(float, float_, (double) l)
#undef PYBIND11_BINARY_OPERATOR
#undef PYBIND11_INPLACE_OPERATOR
#undef PYBIND11_UNARY_OPERATOR
PYBIND11_NAMESPACE_END(detail)
using detail::self;
// Add named operators so that they are accessible via `py::`.
using detail::hash;
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)

View File

@ -1,92 +0,0 @@
/*
pybind11/options.h: global settings that are configurable at runtime.
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "detail/common.h"
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
class options {
public:
// Default RAII constructor, which leaves settings as they currently are.
options() : previous_state(global_state()) {}
// Class is non-copyable.
options(const options &) = delete;
options &operator=(const options &) = delete;
// Destructor, which restores settings that were in effect before.
~options() { global_state() = previous_state; }
// Setter methods (affect the global state):
options &disable_user_defined_docstrings() & {
global_state().show_user_defined_docstrings = false;
return *this;
}
options &enable_user_defined_docstrings() & {
global_state().show_user_defined_docstrings = true;
return *this;
}
options &disable_function_signatures() & {
global_state().show_function_signatures = false;
return *this;
}
options &enable_function_signatures() & {
global_state().show_function_signatures = true;
return *this;
}
options &disable_enum_members_docstring() & {
global_state().show_enum_members_docstring = false;
return *this;
}
options &enable_enum_members_docstring() & {
global_state().show_enum_members_docstring = true;
return *this;
}
// Getter methods (return the global state):
static bool show_user_defined_docstrings() {
return global_state().show_user_defined_docstrings;
}
static bool show_function_signatures() { return global_state().show_function_signatures; }
static bool show_enum_members_docstring() {
return global_state().show_enum_members_docstring;
}
// This type is not meant to be allocated on the heap.
void *operator new(size_t) = delete;
private:
struct state {
bool show_user_defined_docstrings = true; //< Include user-supplied texts in docstrings.
bool show_function_signatures = true; //< Include auto-generated function signatures
// in docstrings.
bool show_enum_members_docstring = true; //< Include auto-generated member list in enum
// docstrings.
};
static state &global_state() {
static state instance;
return instance;
}
state previous_state;
};
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,447 +0,0 @@
/*
pybind11/stl.h: Transparent conversion for STL data types
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "pybind11.h"
#include "detail/common.h"
#include <deque>
#include <list>
#include <map>
#include <ostream>
#include <set>
#include <unordered_map>
#include <unordered_set>
#include <valarray>
// See `detail/common.h` for implementation of these guards.
#if defined(PYBIND11_HAS_OPTIONAL)
# include <optional>
#elif defined(PYBIND11_HAS_EXP_OPTIONAL)
# include <experimental/optional>
#endif
#if defined(PYBIND11_HAS_VARIANT)
# include <variant>
#endif
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
PYBIND11_NAMESPACE_BEGIN(detail)
/// Extracts an const lvalue reference or rvalue reference for U based on the type of T (e.g. for
/// forwarding a container element). Typically used indirect via forwarded_type(), below.
template <typename T, typename U>
using forwarded_type = conditional_t<std::is_lvalue_reference<T>::value,
remove_reference_t<U> &,
remove_reference_t<U> &&>;
/// Forwards a value U as rvalue or lvalue according to whether T is rvalue or lvalue; typically
/// used for forwarding a container's elements.
template <typename T, typename U>
constexpr forwarded_type<T, U> forward_like(U &&u) {
return std::forward<detail::forwarded_type<T, U>>(std::forward<U>(u));
}
// Checks if a container has a STL style reserve method.
// This will only return true for a `reserve()` with a `void` return.
template <typename C>
using has_reserve_method = std::is_same<decltype(std::declval<C>().reserve(0)), void>;
template <typename Type, typename Key>
struct set_caster {
using type = Type;
using key_conv = make_caster<Key>;
private:
template <typename T = Type, enable_if_t<has_reserve_method<T>::value, int> = 0>
void reserve_maybe(const anyset &s, Type *) {
value.reserve(s.size());
}
void reserve_maybe(const anyset &, void *) {}
public:
bool load(handle src, bool convert) {
if (!isinstance<anyset>(src)) {
return false;
}
auto s = reinterpret_borrow<anyset>(src);
value.clear();
reserve_maybe(s, &value);
for (auto entry : s) {
key_conv conv;
if (!conv.load(entry, convert)) {
return false;
}
value.insert(cast_op<Key &&>(std::move(conv)));
}
return true;
}
template <typename T>
static handle cast(T &&src, return_value_policy policy, handle parent) {
if (!std::is_lvalue_reference<T>::value) {
policy = return_value_policy_override<Key>::policy(policy);
}
pybind11::set s;
for (auto &&value : src) {
auto value_ = reinterpret_steal<object>(
key_conv::cast(detail::forward_like<T>(value), policy, parent));
if (!value_ || !s.add(std::move(value_))) {
return handle();
}
}
return s.release();
}
PYBIND11_TYPE_CASTER(type, const_name("Set[") + key_conv::name + const_name("]"));
};
template <typename Type, typename Key, typename Value>
struct map_caster {
using key_conv = make_caster<Key>;
using value_conv = make_caster<Value>;
private:
template <typename T = Type, enable_if_t<has_reserve_method<T>::value, int> = 0>
void reserve_maybe(const dict &d, Type *) {
value.reserve(d.size());
}
void reserve_maybe(const dict &, void *) {}
public:
bool load(handle src, bool convert) {
if (!isinstance<dict>(src)) {
return false;
}
auto d = reinterpret_borrow<dict>(src);
value.clear();
reserve_maybe(d, &value);
for (auto it : d) {
key_conv kconv;
value_conv vconv;
if (!kconv.load(it.first.ptr(), convert) || !vconv.load(it.second.ptr(), convert)) {
return false;
}
value.emplace(cast_op<Key &&>(std::move(kconv)), cast_op<Value &&>(std::move(vconv)));
}
return true;
}
template <typename T>
static handle cast(T &&src, return_value_policy policy, handle parent) {
dict d;
return_value_policy policy_key = policy;
return_value_policy policy_value = policy;
if (!std::is_lvalue_reference<T>::value) {
policy_key = return_value_policy_override<Key>::policy(policy_key);
policy_value = return_value_policy_override<Value>::policy(policy_value);
}
for (auto &&kv : src) {
auto key = reinterpret_steal<object>(
key_conv::cast(detail::forward_like<T>(kv.first), policy_key, parent));
auto value = reinterpret_steal<object>(
value_conv::cast(detail::forward_like<T>(kv.second), policy_value, parent));
if (!key || !value) {
return handle();
}
d[std::move(key)] = std::move(value);
}
return d.release();
}
PYBIND11_TYPE_CASTER(Type,
const_name("Dict[") + key_conv::name + const_name(", ") + value_conv::name
+ const_name("]"));
};
template <typename Type, typename Value>
struct list_caster {
using value_conv = make_caster<Value>;
bool load(handle src, bool convert) {
if (!isinstance<sequence>(src) || isinstance<bytes>(src) || isinstance<str>(src)) {
return false;
}
auto s = reinterpret_borrow<sequence>(src);
value.clear();
reserve_maybe(s, &value);
for (auto it : s) {
value_conv conv;
if (!conv.load(it, convert)) {
return false;
}
value.push_back(cast_op<Value &&>(std::move(conv)));
}
return true;
}
private:
template <typename T = Type, enable_if_t<has_reserve_method<T>::value, int> = 0>
void reserve_maybe(const sequence &s, Type *) {
value.reserve(s.size());
}
void reserve_maybe(const sequence &, void *) {}
public:
template <typename T>
static handle cast(T &&src, return_value_policy policy, handle parent) {
if (!std::is_lvalue_reference<T>::value) {
policy = return_value_policy_override<Value>::policy(policy);
}
list l(src.size());
ssize_t index = 0;
for (auto &&value : src) {
auto value_ = reinterpret_steal<object>(
value_conv::cast(detail::forward_like<T>(value), policy, parent));
if (!value_) {
return handle();
}
PyList_SET_ITEM(l.ptr(), index++, value_.release().ptr()); // steals a reference
}
return l.release();
}
PYBIND11_TYPE_CASTER(Type, const_name("List[") + value_conv::name + const_name("]"));
};
template <typename Type, typename Alloc>
struct type_caster<std::vector<Type, Alloc>> : list_caster<std::vector<Type, Alloc>, Type> {};
template <typename Type, typename Alloc>
struct type_caster<std::deque<Type, Alloc>> : list_caster<std::deque<Type, Alloc>, Type> {};
template <typename Type, typename Alloc>
struct type_caster<std::list<Type, Alloc>> : list_caster<std::list<Type, Alloc>, Type> {};
template <typename ArrayType, typename Value, bool Resizable, size_t Size = 0>
struct array_caster {
using value_conv = make_caster<Value>;
private:
template <bool R = Resizable>
bool require_size(enable_if_t<R, size_t> size) {
if (value.size() != size) {
value.resize(size);
}
return true;
}
template <bool R = Resizable>
bool require_size(enable_if_t<!R, size_t> size) {
return size == Size;
}
public:
bool load(handle src, bool convert) {
if (!isinstance<sequence>(src)) {
return false;
}
auto l = reinterpret_borrow<sequence>(src);
if (!require_size(l.size())) {
return false;
}
size_t ctr = 0;
for (auto it : l) {
value_conv conv;
if (!conv.load(it, convert)) {
return false;
}
value[ctr++] = cast_op<Value &&>(std::move(conv));
}
return true;
}
template <typename T>
static handle cast(T &&src, return_value_policy policy, handle parent) {
list l(src.size());
ssize_t index = 0;
for (auto &&value : src) {
auto value_ = reinterpret_steal<object>(
value_conv::cast(detail::forward_like<T>(value), policy, parent));
if (!value_) {
return handle();
}
PyList_SET_ITEM(l.ptr(), index++, value_.release().ptr()); // steals a reference
}
return l.release();
}
PYBIND11_TYPE_CASTER(ArrayType,
const_name<Resizable>(const_name(""), const_name("Annotated["))
+ const_name("List[") + value_conv::name + const_name("]")
+ const_name<Resizable>(const_name(""),
const_name(", FixedSize(")
+ const_name<Size>() + const_name(")]")));
};
template <typename Type, size_t Size>
struct type_caster<std::array<Type, Size>>
: array_caster<std::array<Type, Size>, Type, false, Size> {};
template <typename Type>
struct type_caster<std::valarray<Type>> : array_caster<std::valarray<Type>, Type, true> {};
template <typename Key, typename Compare, typename Alloc>
struct type_caster<std::set<Key, Compare, Alloc>>
: set_caster<std::set<Key, Compare, Alloc>, Key> {};
template <typename Key, typename Hash, typename Equal, typename Alloc>
struct type_caster<std::unordered_set<Key, Hash, Equal, Alloc>>
: set_caster<std::unordered_set<Key, Hash, Equal, Alloc>, Key> {};
template <typename Key, typename Value, typename Compare, typename Alloc>
struct type_caster<std::map<Key, Value, Compare, Alloc>>
: map_caster<std::map<Key, Value, Compare, Alloc>, Key, Value> {};
template <typename Key, typename Value, typename Hash, typename Equal, typename Alloc>
struct type_caster<std::unordered_map<Key, Value, Hash, Equal, Alloc>>
: map_caster<std::unordered_map<Key, Value, Hash, Equal, Alloc>, Key, Value> {};
// This type caster is intended to be used for std::optional and std::experimental::optional
template <typename Type, typename Value = typename Type::value_type>
struct optional_caster {
using value_conv = make_caster<Value>;
template <typename T>
static handle cast(T &&src, return_value_policy policy, handle parent) {
if (!src) {
return none().release();
}
if (!std::is_lvalue_reference<T>::value) {
policy = return_value_policy_override<Value>::policy(policy);
}
// NOLINTNEXTLINE(bugprone-unchecked-optional-access)
return value_conv::cast(*std::forward<T>(src), policy, parent);
}
bool load(handle src, bool convert) {
if (!src) {
return false;
}
if (src.is_none()) {
return true; // default-constructed value is already empty
}
value_conv inner_caster;
if (!inner_caster.load(src, convert)) {
return false;
}
value.emplace(cast_op<Value &&>(std::move(inner_caster)));
return true;
}
PYBIND11_TYPE_CASTER(Type, const_name("Optional[") + value_conv::name + const_name("]"));
};
#if defined(PYBIND11_HAS_OPTIONAL)
template <typename T>
struct type_caster<std::optional<T>> : public optional_caster<std::optional<T>> {};
template <>
struct type_caster<std::nullopt_t> : public void_caster<std::nullopt_t> {};
#endif
#if defined(PYBIND11_HAS_EXP_OPTIONAL)
template <typename T>
struct type_caster<std::experimental::optional<T>>
: public optional_caster<std::experimental::optional<T>> {};
template <>
struct type_caster<std::experimental::nullopt_t>
: public void_caster<std::experimental::nullopt_t> {};
#endif
/// Visit a variant and cast any found type to Python
struct variant_caster_visitor {
return_value_policy policy;
handle parent;
using result_type = handle; // required by boost::variant in C++11
template <typename T>
result_type operator()(T &&src) const {
return make_caster<T>::cast(std::forward<T>(src), policy, parent);
}
};
/// Helper class which abstracts away variant's `visit` function. `std::variant` and similar
/// `namespace::variant` types which provide a `namespace::visit()` function are handled here
/// automatically using argument-dependent lookup. Users can provide specializations for other
/// variant-like classes, e.g. `boost::variant` and `boost::apply_visitor`.
template <template <typename...> class Variant>
struct visit_helper {
template <typename... Args>
static auto call(Args &&...args) -> decltype(visit(std::forward<Args>(args)...)) {
return visit(std::forward<Args>(args)...);
}
};
/// Generic variant caster
template <typename Variant>
struct variant_caster;
template <template <typename...> class V, typename... Ts>
struct variant_caster<V<Ts...>> {
static_assert(sizeof...(Ts) > 0, "Variant must consist of at least one alternative.");
template <typename U, typename... Us>
bool load_alternative(handle src, bool convert, type_list<U, Us...>) {
auto caster = make_caster<U>();
if (caster.load(src, convert)) {
value = cast_op<U>(std::move(caster));
return true;
}
return load_alternative(src, convert, type_list<Us...>{});
}
bool load_alternative(handle, bool, type_list<>) { return false; }
bool load(handle src, bool convert) {
// Do a first pass without conversions to improve constructor resolution.
// E.g. `py::int_(1).cast<variant<double, int>>()` needs to fill the `int`
// slot of the variant. Without two-pass loading `double` would be filled
// because it appears first and a conversion is possible.
if (convert && load_alternative(src, false, type_list<Ts...>{})) {
return true;
}
return load_alternative(src, convert, type_list<Ts...>{});
}
template <typename Variant>
static handle cast(Variant &&src, return_value_policy policy, handle parent) {
return visit_helper<V>::call(variant_caster_visitor{policy, parent},
std::forward<Variant>(src));
}
using Type = V<Ts...>;
PYBIND11_TYPE_CASTER(Type,
const_name("Union[") + detail::concat(make_caster<Ts>::name...)
+ const_name("]"));
};
#if defined(PYBIND11_HAS_VARIANT)
template <typename... Ts>
struct type_caster<std::variant<Ts...>> : variant_caster<std::variant<Ts...>> {};
template <>
struct type_caster<std::monostate> : public void_caster<std::monostate> {};
#endif
PYBIND11_NAMESPACE_END(detail)
inline std::ostream &operator<<(std::ostream &os, const handle &obj) {
#ifdef PYBIND11_HAS_STRING_VIEW
os << str(obj).cast<std::string_view>();
#else
os << (std::string) str(obj);
#endif
return os;
}
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)

View File

@ -1,116 +0,0 @@
// Copyright (c) 2021 The Pybind Development Team.
// All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
#pragma once
#include "../pybind11.h"
#include "../detail/common.h"
#include "../detail/descr.h"
#include "../cast.h"
#include "../pytypes.h"
#include <string>
#ifdef __has_include
# if defined(PYBIND11_CPP17)
# if __has_include(<filesystem>) && \
PY_VERSION_HEX >= 0x03060000
# include <filesystem>
# define PYBIND11_HAS_FILESYSTEM 1
# elif __has_include(<experimental/filesystem>)
# include <experimental/filesystem>
# define PYBIND11_HAS_EXPERIMENTAL_FILESYSTEM 1
# endif
# endif
#endif
#if !defined(PYBIND11_HAS_FILESYSTEM) && !defined(PYBIND11_HAS_EXPERIMENTAL_FILESYSTEM) \
&& !defined(PYBIND11_HAS_FILESYSTEM_IS_OPTIONAL)
# error \
"Neither #include <filesystem> nor #include <experimental/filesystem is available. (Use -DPYBIND11_HAS_FILESYSTEM_IS_OPTIONAL to ignore.)"
#endif
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
PYBIND11_NAMESPACE_BEGIN(detail)
#if defined(PYBIND11_HAS_FILESYSTEM) || defined(PYBIND11_HAS_EXPERIMENTAL_FILESYSTEM)
template <typename T>
struct path_caster {
private:
static PyObject *unicode_from_fs_native(const std::string &w) {
# if !defined(PYPY_VERSION)
return PyUnicode_DecodeFSDefaultAndSize(w.c_str(), ssize_t(w.size()));
# else
// PyPy mistakenly declares the first parameter as non-const.
return PyUnicode_DecodeFSDefaultAndSize(const_cast<char *>(w.c_str()), ssize_t(w.size()));
# endif
}
static PyObject *unicode_from_fs_native(const std::wstring &w) {
return PyUnicode_FromWideChar(w.c_str(), ssize_t(w.size()));
}
public:
static handle cast(const T &path, return_value_policy, handle) {
if (auto py_str = unicode_from_fs_native(path.native())) {
return module_::import("pathlib")
.attr("Path")(reinterpret_steal<object>(py_str))
.release();
}
return nullptr;
}
bool load(handle handle, bool) {
// PyUnicode_FSConverter and PyUnicode_FSDecoder normally take care of
// calling PyOS_FSPath themselves, but that's broken on PyPy (PyPy
// issue #3168) so we do it ourselves instead.
PyObject *buf = PyOS_FSPath(handle.ptr());
if (!buf) {
PyErr_Clear();
return false;
}
PyObject *native = nullptr;
if constexpr (std::is_same_v<typename T::value_type, char>) {
if (PyUnicode_FSConverter(buf, &native) != 0) {
if (auto *c_str = PyBytes_AsString(native)) {
// AsString returns a pointer to the internal buffer, which
// must not be free'd.
value = c_str;
}
}
} else if constexpr (std::is_same_v<typename T::value_type, wchar_t>) {
if (PyUnicode_FSDecoder(buf, &native) != 0) {
if (auto *c_str = PyUnicode_AsWideCharString(native, nullptr)) {
// AsWideCharString returns a new string that must be free'd.
value = c_str; // Copies the string.
PyMem_Free(c_str);
}
}
}
Py_XDECREF(native);
Py_DECREF(buf);
if (PyErr_Occurred()) {
PyErr_Clear();
return false;
}
return true;
}
PYBIND11_TYPE_CASTER(T, const_name("os.PathLike"));
};
#endif // PYBIND11_HAS_FILESYSTEM || defined(PYBIND11_HAS_EXPERIMENTAL_FILESYSTEM)
#if defined(PYBIND11_HAS_FILESYSTEM)
template <>
struct type_caster<std::filesystem::path> : public path_caster<std::filesystem::path> {};
#elif defined(PYBIND11_HAS_EXPERIMENTAL_FILESYSTEM)
template <>
struct type_caster<std::experimental::filesystem::path>
: public path_caster<std::experimental::filesystem::path> {};
#endif
PYBIND11_NAMESPACE_END(detail)
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)

View File

@ -1,851 +0,0 @@
/*
pybind11/std_bind.h: Binding generators for STL data types
Copyright (c) 2016 Sergey Lyskov and Wenzel Jakob
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "detail/common.h"
#include "detail/type_caster_base.h"
#include "cast.h"
#include "operators.h"
#include <algorithm>
#include <sstream>
#include <type_traits>
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
PYBIND11_NAMESPACE_BEGIN(detail)
/* SFINAE helper class used by 'is_comparable */
template <typename T>
struct container_traits {
template <typename T2>
static std::true_type
test_comparable(decltype(std::declval<const T2 &>() == std::declval<const T2 &>()) *);
template <typename T2>
static std::false_type test_comparable(...);
template <typename T2>
static std::true_type test_value(typename T2::value_type *);
template <typename T2>
static std::false_type test_value(...);
template <typename T2>
static std::true_type test_pair(typename T2::first_type *, typename T2::second_type *);
template <typename T2>
static std::false_type test_pair(...);
static constexpr const bool is_comparable
= std::is_same<std::true_type, decltype(test_comparable<T>(nullptr))>::value;
static constexpr const bool is_pair
= std::is_same<std::true_type, decltype(test_pair<T>(nullptr, nullptr))>::value;
static constexpr const bool is_vector
= std::is_same<std::true_type, decltype(test_value<T>(nullptr))>::value;
static constexpr const bool is_element = !is_pair && !is_vector;
};
/* Default: is_comparable -> std::false_type */
template <typename T, typename SFINAE = void>
struct is_comparable : std::false_type {};
/* For non-map data structures, check whether operator== can be instantiated */
template <typename T>
struct is_comparable<
T,
enable_if_t<container_traits<T>::is_element && container_traits<T>::is_comparable>>
: std::true_type {};
/* For a vector/map data structure, recursively check the value type
(which is std::pair for maps) */
template <typename T>
struct is_comparable<T, enable_if_t<container_traits<T>::is_vector>>
: is_comparable<typename recursive_container_traits<T>::type_to_check_recursively> {};
template <>
struct is_comparable<recursive_bottom> : std::true_type {};
/* For pairs, recursively check the two data types */
template <typename T>
struct is_comparable<T, enable_if_t<container_traits<T>::is_pair>> {
static constexpr const bool value = is_comparable<typename T::first_type>::value
&& is_comparable<typename T::second_type>::value;
};
/* Fallback functions */
template <typename, typename, typename... Args>
void vector_if_copy_constructible(const Args &...) {}
template <typename, typename, typename... Args>
void vector_if_equal_operator(const Args &...) {}
template <typename, typename, typename... Args>
void vector_if_insertion_operator(const Args &...) {}
template <typename, typename, typename... Args>
void vector_modifiers(const Args &...) {}
template <typename Vector, typename Class_>
void vector_if_copy_constructible(enable_if_t<is_copy_constructible<Vector>::value, Class_> &cl) {
cl.def(init<const Vector &>(), "Copy constructor");
}
template <typename Vector, typename Class_>
void vector_if_equal_operator(enable_if_t<is_comparable<Vector>::value, Class_> &cl) {
using T = typename Vector::value_type;
cl.def(self == self);
cl.def(self != self);
cl.def(
"count",
[](const Vector &v, const T &x) { return std::count(v.begin(), v.end(), x); },
arg("x"),
"Return the number of times ``x`` appears in the list");
cl.def(
"remove",
[](Vector &v, const T &x) {
auto p = std::find(v.begin(), v.end(), x);
if (p != v.end()) {
v.erase(p);
} else {
throw value_error();
}
},
arg("x"),
"Remove the first item from the list whose value is x. "
"It is an error if there is no such item.");
cl.def(
"__contains__",
[](const Vector &v, const T &x) { return std::find(v.begin(), v.end(), x) != v.end(); },
arg("x"),
"Return true the container contains ``x``");
}
// Vector modifiers -- requires a copyable vector_type:
// (Technically, some of these (pop and __delitem__) don't actually require copyability, but it
// seems silly to allow deletion but not insertion, so include them here too.)
template <typename Vector, typename Class_>
void vector_modifiers(
enable_if_t<is_copy_constructible<typename Vector::value_type>::value, Class_> &cl) {
using T = typename Vector::value_type;
using SizeType = typename Vector::size_type;
using DiffType = typename Vector::difference_type;
auto wrap_i = [](DiffType i, SizeType n) {
if (i < 0) {
i += n;
}
if (i < 0 || (SizeType) i >= n) {
throw index_error();
}
return i;
};
cl.def(
"append",
[](Vector &v, const T &value) { v.push_back(value); },
arg("x"),
"Add an item to the end of the list");
cl.def(init([](const iterable &it) {
auto v = std::unique_ptr<Vector>(new Vector());
v->reserve(len_hint(it));
for (handle h : it) {
v->push_back(h.cast<T>());
}
return v.release();
}));
cl.def(
"clear", [](Vector &v) { v.clear(); }, "Clear the contents");
cl.def(
"extend",
[](Vector &v, const Vector &src) { v.insert(v.end(), src.begin(), src.end()); },
arg("L"),
"Extend the list by appending all the items in the given list");
cl.def(
"extend",
[](Vector &v, const iterable &it) {
const size_t old_size = v.size();
v.reserve(old_size + len_hint(it));
try {
for (handle h : it) {
v.push_back(h.cast<T>());
}
} catch (const cast_error &) {
v.erase(v.begin() + static_cast<typename Vector::difference_type>(old_size),
v.end());
try {
v.shrink_to_fit();
} catch (const std::exception &) {
// Do nothing
}
throw;
}
},
arg("L"),
"Extend the list by appending all the items in the given list");
cl.def(
"insert",
[](Vector &v, DiffType i, const T &x) {
// Can't use wrap_i; i == v.size() is OK
if (i < 0) {
i += v.size();
}
if (i < 0 || (SizeType) i > v.size()) {
throw index_error();
}
v.insert(v.begin() + i, x);
},
arg("i"),
arg("x"),
"Insert an item at a given position.");
cl.def(
"pop",
[](Vector &v) {
if (v.empty()) {
throw index_error();
}
T t = std::move(v.back());
v.pop_back();
return t;
},
"Remove and return the last item");
cl.def(
"pop",
[wrap_i](Vector &v, DiffType i) {
i = wrap_i(i, v.size());
T t = std::move(v[(SizeType) i]);
v.erase(std::next(v.begin(), i));
return t;
},
arg("i"),
"Remove and return the item at index ``i``");
cl.def("__setitem__", [wrap_i](Vector &v, DiffType i, const T &t) {
i = wrap_i(i, v.size());
v[(SizeType) i] = t;
});
/// Slicing protocol
cl.def(
"__getitem__",
[](const Vector &v, const slice &slice) -> Vector * {
size_t start = 0, stop = 0, step = 0, slicelength = 0;
if (!slice.compute(v.size(), &start, &stop, &step, &slicelength)) {
throw error_already_set();
}
auto *seq = new Vector();
seq->reserve((size_t) slicelength);
for (size_t i = 0; i < slicelength; ++i) {
seq->push_back(v[start]);
start += step;
}
return seq;
},
arg("s"),
"Retrieve list elements using a slice object");
cl.def(
"__setitem__",
[](Vector &v, const slice &slice, const Vector &value) {
size_t start = 0, stop = 0, step = 0, slicelength = 0;
if (!slice.compute(v.size(), &start, &stop, &step, &slicelength)) {
throw error_already_set();
}
if (slicelength != value.size()) {
throw std::runtime_error(
"Left and right hand size of slice assignment have different sizes!");
}
for (size_t i = 0; i < slicelength; ++i) {
v[start] = value[i];
start += step;
}
},
"Assign list elements using a slice object");
cl.def(
"__delitem__",
[wrap_i](Vector &v, DiffType i) {
i = wrap_i(i, v.size());
v.erase(v.begin() + i);
},
"Delete the list elements at index ``i``");
cl.def(
"__delitem__",
[](Vector &v, const slice &slice) {
size_t start = 0, stop = 0, step = 0, slicelength = 0;
if (!slice.compute(v.size(), &start, &stop, &step, &slicelength)) {
throw error_already_set();
}
if (step == 1 && false) {
v.erase(v.begin() + (DiffType) start, v.begin() + DiffType(start + slicelength));
} else {
for (size_t i = 0; i < slicelength; ++i) {
v.erase(v.begin() + DiffType(start));
start += step - 1;
}
}
},
"Delete list elements using a slice object");
}
// If the type has an operator[] that doesn't return a reference (most notably std::vector<bool>),
// we have to access by copying; otherwise we return by reference.
template <typename Vector>
using vector_needs_copy
= negation<std::is_same<decltype(std::declval<Vector>()[typename Vector::size_type()]),
typename Vector::value_type &>>;
// The usual case: access and iterate by reference
template <typename Vector, typename Class_>
void vector_accessor(enable_if_t<!vector_needs_copy<Vector>::value, Class_> &cl) {
using T = typename Vector::value_type;
using SizeType = typename Vector::size_type;
using DiffType = typename Vector::difference_type;
using ItType = typename Vector::iterator;
auto wrap_i = [](DiffType i, SizeType n) {
if (i < 0) {
i += n;
}
if (i < 0 || (SizeType) i >= n) {
throw index_error();
}
return i;
};
cl.def(
"__getitem__",
[wrap_i](Vector &v, DiffType i) -> T & {
i = wrap_i(i, v.size());
return v[(SizeType) i];
},
return_value_policy::reference_internal // ref + keepalive
);
cl.def(
"__iter__",
[](Vector &v) {
return make_iterator<return_value_policy::reference_internal, ItType, ItType, T &>(
v.begin(), v.end());
},
keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */
);
}
// The case for special objects, like std::vector<bool>, that have to be returned-by-copy:
template <typename Vector, typename Class_>
void vector_accessor(enable_if_t<vector_needs_copy<Vector>::value, Class_> &cl) {
using T = typename Vector::value_type;
using SizeType = typename Vector::size_type;
using DiffType = typename Vector::difference_type;
using ItType = typename Vector::iterator;
cl.def("__getitem__", [](const Vector &v, DiffType i) -> T {
if (i < 0) {
i += v.size();
if (i < 0) {
throw index_error();
}
}
auto i_st = static_cast<SizeType>(i);
if (i_st >= v.size()) {
throw index_error();
}
return v[i_st];
});
cl.def(
"__iter__",
[](Vector &v) {
return make_iterator<return_value_policy::copy, ItType, ItType, T>(v.begin(), v.end());
},
keep_alive<0, 1>() /* Essential: keep list alive while iterator exists */
);
}
template <typename Vector, typename Class_>
auto vector_if_insertion_operator(Class_ &cl, std::string const &name)
-> decltype(std::declval<std::ostream &>() << std::declval<typename Vector::value_type>(),
void()) {
using size_type = typename Vector::size_type;
cl.def(
"__repr__",
[name](Vector &v) {
std::ostringstream s;
s << name << '[';
for (size_type i = 0; i < v.size(); ++i) {
s << v[i];
if (i != v.size() - 1) {
s << ", ";
}
}
s << ']';
return s.str();
},
"Return the canonical string representation of this list.");
}
// Provide the buffer interface for vectors if we have data() and we have a format for it
// GCC seems to have "void std::vector<bool>::data()" - doing SFINAE on the existence of data()
// is insufficient, we need to check it returns an appropriate pointer
template <typename Vector, typename = void>
struct vector_has_data_and_format : std::false_type {};
template <typename Vector>
struct vector_has_data_and_format<
Vector,
enable_if_t<std::is_same<decltype(format_descriptor<typename Vector::value_type>::format(),
std::declval<Vector>().data()),
typename Vector::value_type *>::value>> : std::true_type {};
// [workaround(intel)] Separate function required here
// Workaround as the Intel compiler does not compile the enable_if_t part below
// (tested with icc (ICC) 2021.1 Beta 20200827)
template <typename... Args>
constexpr bool args_any_are_buffer() {
return detail::any_of<std::is_same<Args, buffer_protocol>...>::value;
}
// [workaround(intel)] Separate function required here
// [workaround(msvc)] Can't use constexpr bool in return type
// Add the buffer interface to a vector
template <typename Vector, typename Class_, typename... Args>
void vector_buffer_impl(Class_ &cl, std::true_type) {
using T = typename Vector::value_type;
static_assert(vector_has_data_and_format<Vector>::value,
"There is not an appropriate format descriptor for this vector");
// numpy.h declares this for arbitrary types, but it may raise an exception and crash hard
// at runtime if PYBIND11_NUMPY_DTYPE hasn't been called, so check here
format_descriptor<T>::format();
cl.def_buffer([](Vector &v) -> buffer_info {
return buffer_info(v.data(),
static_cast<ssize_t>(sizeof(T)),
format_descriptor<T>::format(),
1,
{v.size()},
{sizeof(T)});
});
cl.def(init([](const buffer &buf) {
auto info = buf.request();
if (info.ndim != 1 || info.strides[0] % static_cast<ssize_t>(sizeof(T))) {
throw type_error("Only valid 1D buffers can be copied to a vector");
}
if (!detail::compare_buffer_info<T>::compare(info)
|| (ssize_t) sizeof(T) != info.itemsize) {
throw type_error("Format mismatch (Python: " + info.format
+ " C++: " + format_descriptor<T>::format() + ")");
}
T *p = static_cast<T *>(info.ptr);
ssize_t step = info.strides[0] / static_cast<ssize_t>(sizeof(T));
T *end = p + info.shape[0] * step;
if (step == 1) {
return Vector(p, end);
}
Vector vec;
vec.reserve((size_t) info.shape[0]);
for (; p != end; p += step) {
vec.push_back(*p);
}
return vec;
}));
return;
}
template <typename Vector, typename Class_, typename... Args>
void vector_buffer_impl(Class_ &, std::false_type) {}
template <typename Vector, typename Class_, typename... Args>
void vector_buffer(Class_ &cl) {
vector_buffer_impl<Vector, Class_, Args...>(
cl, detail::any_of<std::is_same<Args, buffer_protocol>...>{});
}
PYBIND11_NAMESPACE_END(detail)
//
// std::vector
//
template <typename Vector, typename holder_type = std::unique_ptr<Vector>, typename... Args>
class_<Vector, holder_type> bind_vector(handle scope, std::string const &name, Args &&...args) {
using Class_ = class_<Vector, holder_type>;
// If the value_type is unregistered (e.g. a converting type) or is itself registered
// module-local then make the vector binding module-local as well:
using vtype = typename Vector::value_type;
auto *vtype_info = detail::get_type_info(typeid(vtype));
bool local = !vtype_info || vtype_info->module_local;
Class_ cl(scope, name.c_str(), pybind11::module_local(local), std::forward<Args>(args)...);
// Declare the buffer interface if a buffer_protocol() is passed in
detail::vector_buffer<Vector, Class_, Args...>(cl);
cl.def(init<>());
// Register copy constructor (if possible)
detail::vector_if_copy_constructible<Vector, Class_>(cl);
// Register comparison-related operators and functions (if possible)
detail::vector_if_equal_operator<Vector, Class_>(cl);
// Register stream insertion operator (if possible)
detail::vector_if_insertion_operator<Vector, Class_>(cl, name);
// Modifiers require copyable vector value type
detail::vector_modifiers<Vector, Class_>(cl);
// Accessor and iterator; return by value if copyable, otherwise we return by ref + keep-alive
detail::vector_accessor<Vector, Class_>(cl);
cl.def(
"__bool__",
[](const Vector &v) -> bool { return !v.empty(); },
"Check whether the list is nonempty");
cl.def("__len__", &Vector::size);
#if 0
// C++ style functions deprecated, leaving it here as an example
cl.def(init<size_type>());
cl.def("resize",
(void (Vector::*) (size_type count)) & Vector::resize,
"changes the number of elements stored");
cl.def("erase",
[](Vector &v, SizeType i) {
if (i >= v.size())
throw index_error();
v.erase(v.begin() + i);
}, "erases element at index ``i``");
cl.def("empty", &Vector::empty, "checks whether the container is empty");
cl.def("size", &Vector::size, "returns the number of elements");
cl.def("push_back", (void (Vector::*)(const T&)) &Vector::push_back, "adds an element to the end");
cl.def("pop_back", &Vector::pop_back, "removes the last element");
cl.def("max_size", &Vector::max_size, "returns the maximum possible number of elements");
cl.def("reserve", &Vector::reserve, "reserves storage");
cl.def("capacity", &Vector::capacity, "returns the number of elements that can be held in currently allocated storage");
cl.def("shrink_to_fit", &Vector::shrink_to_fit, "reduces memory usage by freeing unused memory");
cl.def("clear", &Vector::clear, "clears the contents");
cl.def("swap", &Vector::swap, "swaps the contents");
cl.def("front", [](Vector &v) {
if (v.size()) return v.front();
else throw index_error();
}, "access the first element");
cl.def("back", [](Vector &v) {
if (v.size()) return v.back();
else throw index_error();
}, "access the last element ");
#endif
return cl;
}
//
// std::map, std::unordered_map
//
PYBIND11_NAMESPACE_BEGIN(detail)
/* Fallback functions */
template <typename, typename, typename... Args>
void map_if_insertion_operator(const Args &...) {}
template <typename, typename, typename... Args>
void map_assignment(const Args &...) {}
// Map assignment when copy-assignable: just copy the value
template <typename Map, typename Class_>
void map_assignment(
enable_if_t<is_copy_assignable<typename Map::mapped_type>::value, Class_> &cl) {
using KeyType = typename Map::key_type;
using MappedType = typename Map::mapped_type;
cl.def("__setitem__", [](Map &m, const KeyType &k, const MappedType &v) {
auto it = m.find(k);
if (it != m.end()) {
it->second = v;
} else {
m.emplace(k, v);
}
});
}
// Not copy-assignable, but still copy-constructible: we can update the value by erasing and
// reinserting
template <typename Map, typename Class_>
void map_assignment(enable_if_t<!is_copy_assignable<typename Map::mapped_type>::value
&& is_copy_constructible<typename Map::mapped_type>::value,
Class_> &cl) {
using KeyType = typename Map::key_type;
using MappedType = typename Map::mapped_type;
cl.def("__setitem__", [](Map &m, const KeyType &k, const MappedType &v) {
// We can't use m[k] = v; because value type might not be default constructable
auto r = m.emplace(k, v);
if (!r.second) {
// value type is not copy assignable so the only way to insert it is to erase it
// first...
m.erase(r.first);
m.emplace(k, v);
}
});
}
template <typename Map, typename Class_>
auto map_if_insertion_operator(Class_ &cl, std::string const &name)
-> decltype(std::declval<std::ostream &>() << std::declval<typename Map::key_type>()
<< std::declval<typename Map::mapped_type>(),
void()) {
cl.def(
"__repr__",
[name](Map &m) {
std::ostringstream s;
s << name << '{';
bool f = false;
for (auto const &kv : m) {
if (f) {
s << ", ";
}
s << kv.first << ": " << kv.second;
f = true;
}
s << '}';
return s.str();
},
"Return the canonical string representation of this map.");
}
template <typename KeyType>
struct keys_view {
virtual size_t len() = 0;
virtual iterator iter() = 0;
virtual bool contains(const KeyType &k) = 0;
virtual bool contains(const object &k) = 0;
virtual ~keys_view() = default;
};
template <typename MappedType>
struct values_view {
virtual size_t len() = 0;
virtual iterator iter() = 0;
virtual ~values_view() = default;
};
template <typename KeyType, typename MappedType>
struct items_view {
virtual size_t len() = 0;
virtual iterator iter() = 0;
virtual ~items_view() = default;
};
template <typename Map, typename KeysView>
struct KeysViewImpl : public KeysView {
explicit KeysViewImpl(Map &map) : map(map) {}
size_t len() override { return map.size(); }
iterator iter() override { return make_key_iterator(map.begin(), map.end()); }
bool contains(const typename Map::key_type &k) override { return map.find(k) != map.end(); }
bool contains(const object &) override { return false; }
Map &map;
};
template <typename Map, typename ValuesView>
struct ValuesViewImpl : public ValuesView {
explicit ValuesViewImpl(Map &map) : map(map) {}
size_t len() override { return map.size(); }
iterator iter() override { return make_value_iterator(map.begin(), map.end()); }
Map &map;
};
template <typename Map, typename ItemsView>
struct ItemsViewImpl : public ItemsView {
explicit ItemsViewImpl(Map &map) : map(map) {}
size_t len() override { return map.size(); }
iterator iter() override { return make_iterator(map.begin(), map.end()); }
Map &map;
};
PYBIND11_NAMESPACE_END(detail)
template <typename Map, typename holder_type = std::unique_ptr<Map>, typename... Args>
class_<Map, holder_type> bind_map(handle scope, const std::string &name, Args &&...args) {
using KeyType = typename Map::key_type;
using MappedType = typename Map::mapped_type;
using StrippedKeyType = detail::remove_cvref_t<KeyType>;
using StrippedMappedType = detail::remove_cvref_t<MappedType>;
using KeysView = detail::keys_view<StrippedKeyType>;
using ValuesView = detail::values_view<StrippedMappedType>;
using ItemsView = detail::items_view<StrippedKeyType, StrippedMappedType>;
using Class_ = class_<Map, holder_type>;
// If either type is a non-module-local bound type then make the map binding non-local as well;
// otherwise (e.g. both types are either module-local or converting) the map will be
// module-local.
auto *tinfo = detail::get_type_info(typeid(MappedType));
bool local = !tinfo || tinfo->module_local;
if (local) {
tinfo = detail::get_type_info(typeid(KeyType));
local = !tinfo || tinfo->module_local;
}
Class_ cl(scope, name.c_str(), pybind11::module_local(local), std::forward<Args>(args)...);
static constexpr auto key_type_descr = detail::make_caster<KeyType>::name;
static constexpr auto mapped_type_descr = detail::make_caster<MappedType>::name;
std::string key_type_name(key_type_descr.text), mapped_type_name(mapped_type_descr.text);
// If key type isn't properly wrapped, fall back to C++ names
if (key_type_name == "%") {
key_type_name = detail::type_info_description(typeid(KeyType));
}
// Similarly for value type:
if (mapped_type_name == "%") {
mapped_type_name = detail::type_info_description(typeid(MappedType));
}
// Wrap KeysView[KeyType] if it wasn't already wrapped
if (!detail::get_type_info(typeid(KeysView))) {
class_<KeysView> keys_view(
scope, ("KeysView[" + key_type_name + "]").c_str(), pybind11::module_local(local));
keys_view.def("__len__", &KeysView::len);
keys_view.def("__iter__",
&KeysView::iter,
keep_alive<0, 1>() /* Essential: keep view alive while iterator exists */
);
keys_view.def("__contains__",
static_cast<bool (KeysView::*)(const KeyType &)>(&KeysView::contains));
// Fallback for when the object is not of the key type
keys_view.def("__contains__",
static_cast<bool (KeysView::*)(const object &)>(&KeysView::contains));
}
// Similarly for ValuesView:
if (!detail::get_type_info(typeid(ValuesView))) {
class_<ValuesView> values_view(scope,
("ValuesView[" + mapped_type_name + "]").c_str(),
pybind11::module_local(local));
values_view.def("__len__", &ValuesView::len);
values_view.def("__iter__",
&ValuesView::iter,
keep_alive<0, 1>() /* Essential: keep view alive while iterator exists */
);
}
// Similarly for ItemsView:
if (!detail::get_type_info(typeid(ItemsView))) {
class_<ItemsView> items_view(
scope,
("ItemsView[" + key_type_name + ", ").append(mapped_type_name + "]").c_str(),
pybind11::module_local(local));
items_view.def("__len__", &ItemsView::len);
items_view.def("__iter__",
&ItemsView::iter,
keep_alive<0, 1>() /* Essential: keep view alive while iterator exists */
);
}
cl.def(init<>());
// Register stream insertion operator (if possible)
detail::map_if_insertion_operator<Map, Class_>(cl, name);
cl.def(
"__bool__",
[](const Map &m) -> bool { return !m.empty(); },
"Check whether the map is nonempty");
cl.def(
"__iter__",
[](Map &m) { return make_key_iterator(m.begin(), m.end()); },
keep_alive<0, 1>() /* Essential: keep map alive while iterator exists */
);
cl.def(
"keys",
[](Map &m) {
return std::unique_ptr<KeysView>(new detail::KeysViewImpl<Map, KeysView>(m));
},
keep_alive<0, 1>() /* Essential: keep map alive while view exists */
);
cl.def(
"values",
[](Map &m) {
return std::unique_ptr<ValuesView>(new detail::ValuesViewImpl<Map, ValuesView>(m));
},
keep_alive<0, 1>() /* Essential: keep map alive while view exists */
);
cl.def(
"items",
[](Map &m) {
return std::unique_ptr<ItemsView>(new detail::ItemsViewImpl<Map, ItemsView>(m));
},
keep_alive<0, 1>() /* Essential: keep map alive while view exists */
);
cl.def(
"__getitem__",
[](Map &m, const KeyType &k) -> MappedType & {
auto it = m.find(k);
if (it == m.end()) {
throw key_error();
}
return it->second;
},
return_value_policy::reference_internal // ref + keepalive
);
cl.def("__contains__", [](Map &m, const KeyType &k) -> bool {
auto it = m.find(k);
if (it == m.end()) {
return false;
}
return true;
});
// Fallback for when the object is not of the key type
cl.def("__contains__", [](Map &, const object &) -> bool { return false; });
// Assignment provided only if the type is copyable
detail::map_assignment<Map, Class_>(cl);
cl.def("__delitem__", [](Map &m, const KeyType &k) {
auto it = m.find(k);
if (it == m.end()) {
throw key_error();
}
m.erase(it);
});
cl.def("__len__", &Map::size);
return cl;
}
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)

View File

@ -1,61 +0,0 @@
// Copyright (c) 2023 The pybind Community.
#pragma once
#include "detail/common.h"
#include "detail/descr.h"
#include "cast.h"
#include "pytypes.h"
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
PYBIND11_NAMESPACE_BEGIN(detail)
template <>
class type_caster<PyObject> {
public:
static constexpr auto name = const_name("object"); // See discussion under PR #4601.
// This overload is purely to guard against accidents.
template <typename T,
detail::enable_if_t<!is_same_ignoring_cvref<T, PyObject *>::value, int> = 0>
static handle cast(T &&, return_value_policy, handle /*parent*/) {
static_assert(is_same_ignoring_cvref<T, PyObject *>::value,
"Invalid C++ type T for to-Python conversion (type_caster<PyObject>).");
return nullptr; // Unreachable.
}
static handle cast(PyObject *src, return_value_policy policy, handle /*parent*/) {
if (src == nullptr) {
throw error_already_set();
}
if (PyErr_Occurred()) {
raise_from(PyExc_SystemError, "src != nullptr but PyErr_Occurred()");
throw error_already_set();
}
if (policy == return_value_policy::take_ownership) {
return src;
}
if (policy == return_value_policy::reference
|| policy == return_value_policy::automatic_reference) {
return handle(src).inc_ref();
}
pybind11_fail("type_caster<PyObject>::cast(): unsupported return_value_policy: "
+ std::to_string(static_cast<int>(policy)));
}
bool load(handle src, bool) {
value = reinterpret_borrow<object>(src);
return true;
}
template <typename T>
using cast_op_type = PyObject *;
explicit operator PyObject *() { return value.ptr(); }
private:
object value;
};
PYBIND11_NAMESPACE_END(detail)
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)

282
3rdparty/waitingspinnerwidget.cpp vendored Normal file
View File

@ -0,0 +1,282 @@
/*
* SPDX-License-Identifier: MIT
* License-Filename: LICENSES/MIT-QtWaitingSpinner
*/
/* Original Work Copyright (c) 2012-2014 Alexander Turkin
Modified 2014 by William Hallatt
Modified 2015 by Jacob Dawid
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
// Own includes
#include "waitingspinnerwidget.h"
// Standard includes
#include <cmath>
#include <algorithm>
// Qt includes
#include <QPainter>
#include <QTimer>
WaitingSpinnerWidget::WaitingSpinnerWidget(QWidget *parent,
bool centerOnParent,
bool disableParentWhenSpinning)
: QWidget(parent),
_centerOnParent(centerOnParent),
_disableParentWhenSpinning(disableParentWhenSpinning) {
initialize();
}
WaitingSpinnerWidget::WaitingSpinnerWidget(Qt::WindowModality modality,
QWidget *parent,
bool centerOnParent,
bool disableParentWhenSpinning)
: QWidget(parent, Qt::Dialog | Qt::FramelessWindowHint),
_centerOnParent(centerOnParent),
_disableParentWhenSpinning(disableParentWhenSpinning){
initialize();
// We need to set the window modality AFTER we've hidden the
// widget for the first time since changing this property while
// the widget is visible has no effect.
setWindowModality(modality);
setAttribute(Qt::WA_TranslucentBackground);
}
void WaitingSpinnerWidget::initialize() {
_color = Qt::black;
_roundness = 100.0;
_minimumTrailOpacity = 3.14159265358979323846;
_trailFadePercentage = 80.0;
_revolutionsPerSecond = 1.57079632679489661923;
_numberOfLines = 20;
_lineLength = 10;
_lineWidth = 2;
_innerRadius = 10;
_currentCounter = 0;
_isSpinning = false;
_timer = new QTimer(this);
connect(_timer, SIGNAL(timeout()), this, SLOT(rotate()));
updateSize();
updateTimer();
hide();
}
void WaitingSpinnerWidget::paintEvent(QPaintEvent *) {
updatePosition();
QPainter painter(this);
painter.fillRect(this->rect(), Qt::transparent);
painter.setRenderHint(QPainter::Antialiasing, true);
if (_currentCounter >= _numberOfLines) {
_currentCounter = 0;
}
painter.setPen(Qt::NoPen);
for (int i = 0; i < _numberOfLines; ++i) {
painter.save();
painter.translate(_innerRadius + _lineLength,
_innerRadius + _lineLength);
qreal rotateAngle =
static_cast<qreal>(360 * i) / static_cast<qreal>(_numberOfLines);
painter.rotate(rotateAngle);
painter.translate(_innerRadius, 0);
int distance =
lineCountDistanceFromPrimary(i, _currentCounter, _numberOfLines);
QColor color =
currentLineColor(distance, _numberOfLines, _trailFadePercentage,
_minimumTrailOpacity, _color);
painter.setBrush(color);
// TODO improve the way rounded rect is painted
painter.drawRoundedRect(
QRect(0, -_lineWidth / 2, _lineLength, _lineWidth), _roundness,
_roundness, Qt::RelativeSize);
painter.restore();
}
}
void WaitingSpinnerWidget::start() {
updatePosition();
_isSpinning = true;
show();
if(parentWidget() && _disableParentWhenSpinning) {
parentWidget()->setEnabled(false);
}
if (!_timer->isActive()) {
_timer->start();
_currentCounter = 0;
}
}
void WaitingSpinnerWidget::stop() {
_isSpinning = false;
hide();
if(parentWidget() && _disableParentWhenSpinning) {
parentWidget()->setEnabled(true);
}
if (_timer->isActive()) {
_timer->stop();
_currentCounter = 0;
}
}
void WaitingSpinnerWidget::setNumberOfLines(int lines) {
_numberOfLines = lines;
_currentCounter = 0;
updateTimer();
}
void WaitingSpinnerWidget::setLineLength(int length) {
_lineLength = length;
updateSize();
}
void WaitingSpinnerWidget::setLineWidth(int width) {
_lineWidth = width;
updateSize();
}
void WaitingSpinnerWidget::setInnerRadius(int radius) {
_innerRadius = radius;
updateSize();
}
QColor WaitingSpinnerWidget::color() {
return _color;
}
qreal WaitingSpinnerWidget::roundness() {
return _roundness;
}
qreal WaitingSpinnerWidget::minimumTrailOpacity() {
return _minimumTrailOpacity;
}
qreal WaitingSpinnerWidget::trailFadePercentage() {
return _trailFadePercentage;
}
qreal WaitingSpinnerWidget::revolutionsPersSecond() {
return _revolutionsPerSecond;
}
int WaitingSpinnerWidget::numberOfLines() {
return _numberOfLines;
}
int WaitingSpinnerWidget::lineLength() {
return _lineLength;
}
int WaitingSpinnerWidget::lineWidth() {
return _lineWidth;
}
int WaitingSpinnerWidget::innerRadius() {
return _innerRadius;
}
bool WaitingSpinnerWidget::isSpinning() const {
return _isSpinning;
}
void WaitingSpinnerWidget::setRoundness(qreal roundness) {
_roundness = std::max(0.0, std::min(100.0, roundness));
}
void WaitingSpinnerWidget::setColor(QColor color) {
_color = color;
}
void WaitingSpinnerWidget::setRevolutionsPerSecond(qreal revolutionsPerSecond) {
_revolutionsPerSecond = revolutionsPerSecond;
updateTimer();
}
void WaitingSpinnerWidget::setTrailFadePercentage(qreal trail) {
_trailFadePercentage = trail;
}
void WaitingSpinnerWidget::setMinimumTrailOpacity(qreal minimumTrailOpacity) {
_minimumTrailOpacity = minimumTrailOpacity;
}
void WaitingSpinnerWidget::rotate() {
++_currentCounter;
if (_currentCounter >= _numberOfLines) {
_currentCounter = 0;
}
update();
}
void WaitingSpinnerWidget::updateSize() {
int size = (_innerRadius + _lineLength) * 2;
setFixedSize(size, size);
}
void WaitingSpinnerWidget::updateTimer() {
_timer->setInterval(1000 / (_numberOfLines * _revolutionsPerSecond));
}
void WaitingSpinnerWidget::updatePosition() {
if (parentWidget() && _centerOnParent) {
move(parentWidget()->width() / 2 - width() / 2,
parentWidget()->height() / 2 - height() / 2);
}
}
int WaitingSpinnerWidget::lineCountDistanceFromPrimary(int current, int primary,
int totalNrOfLines) {
int distance = primary - current;
if (distance < 0) {
distance += totalNrOfLines;
}
return distance;
}
QColor WaitingSpinnerWidget::currentLineColor(int countDistance, int totalNrOfLines,
qreal trailFadePerc, qreal minOpacity,
QColor color) {
if (countDistance == 0) {
return color;
}
const qreal minAlphaF = minOpacity / 100.0;
int distanceThreshold =
static_cast<int>(ceil((totalNrOfLines - 1) * trailFadePerc / 100.0));
if (countDistance > distanceThreshold) {
color.setAlphaF(minAlphaF);
} else {
qreal alphaDiff = color.alphaF() - minAlphaF;
qreal gradient = alphaDiff / static_cast<qreal>(distanceThreshold + 1);
qreal resultAlpha = color.alphaF() - gradient * countDistance;
// If alpha is out of bounds, clip it.
resultAlpha = std::min(1.0, std::max(0.0, resultAlpha));
color.setAlphaF(resultAlpha);
}
return color;
}

119
3rdparty/waitingspinnerwidget.h vendored Normal file
View File

@ -0,0 +1,119 @@
/*
* SPDX-License-Identifier: MIT
* License-Filename: LICENSES/MIT-QtWaitingSpinner
*/
/* Original Work Copyright (c) 2012-2014 Alexander Turkin
Modified 2014 by William Hallatt
Modified 2015 by Jacob Dawid
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#pragma once
// Qt includes
#include <QWidget>
#include <QTimer>
#include <QColor>
class WaitingSpinnerWidget : public QWidget {
Q_OBJECT
public:
/*! Constructor for "standard" widget behaviour - use this
* constructor if you wish to, e.g. embed your widget in another. */
WaitingSpinnerWidget(QWidget *parent = nullptr,
bool centerOnParent = true,
bool disableParentWhenSpinning = true);
/*! Constructor - use this constructor to automatically create a modal
* ("blocking") spinner on top of the calling widget/window. If a valid
* parent widget is provided, "centreOnParent" will ensure that
* QtWaitingSpinner automatically centres itself on it, if not,
* "centreOnParent" is ignored. */
WaitingSpinnerWidget(Qt::WindowModality modality,
QWidget *parent = nullptr,
bool centerOnParent = true,
bool disableParentWhenSpinning = true);
public slots:
void start();
void stop();
public:
void setColor(QColor color);
void setRoundness(qreal roundness);
void setMinimumTrailOpacity(qreal minimumTrailOpacity);
void setTrailFadePercentage(qreal trail);
void setRevolutionsPerSecond(qreal revolutionsPerSecond);
void setNumberOfLines(int lines);
void setLineLength(int length);
void setLineWidth(int width);
void setInnerRadius(int radius);
void setText(QString text);
QColor color();
qreal roundness();
qreal minimumTrailOpacity();
qreal trailFadePercentage();
qreal revolutionsPersSecond();
int numberOfLines();
int lineLength();
int lineWidth();
int innerRadius();
bool isSpinning() const;
private slots:
void rotate();
protected:
void paintEvent(QPaintEvent *paintEvent);
private:
static int lineCountDistanceFromPrimary(int current, int primary,
int totalNrOfLines);
static QColor currentLineColor(int distance, int totalNrOfLines,
qreal trailFadePerc, qreal minOpacity,
QColor color);
void initialize();
void updateSize();
void updateTimer();
void updatePosition();
private:
QColor _color;
qreal _roundness; // 0..100
qreal _minimumTrailOpacity;
qreal _trailFadePercentage;
qreal _revolutionsPerSecond;
int _numberOfLines;
int _lineLength;
int _lineWidth;
int _innerRadius;
private:
WaitingSpinnerWidget(const WaitingSpinnerWidget&);
WaitingSpinnerWidget& operator=(const WaitingSpinnerWidget&);
QTimer *_timer;
bool _centerOnParent;
bool _disableParentWhenSpinning;
int _currentCounter;
bool _isSpinning;
};

81
AUTHORS
View File

@ -1,112 +1,45 @@
<!-- SPDX-FileCopyrightText: no
SPDX-License-Identifier: CC0-1.0
-->
# MAINTAINER
Calamares development is sponsored by Blue Systems GmbH - Liberating Software.
Calamares maintainers through the years:
* Teo Mrnjavac <teo@kde.org> (maintainer -2017)
* Adriaan de Groot <groot@kde.org> (maintainer 2017-2022)
* Community (2022-)
Community maintainers are Adriaan de Groot, Anke Boersma, Evan James.
* Adriaan de Groot <groot@kde.org> (maintainer 2017-)
# CONTRIBUTORS
Calamares has received contributions of code, documentation, artwork
and moral support from (alphabetically by first name or nickname):
- Aaron Rainbolt
- Adriaan de Groot
- Aleksey Samoilov
- Alf Gaida
- aliveafter1000
- Allen Welkie
- AlmAck
- Andrius Štikonas
- Anke Boersma
- Anubhav Choudhary
- Arjen Balfoort
- Arnaud Ferraris
- Artem Grinev
- artoo
- benne-dee
- artoo@cromnix.org
- Bernhard Landauer
- Bezzy1999
- Bill Auger
- Bob van der Linden
- Boria138
- Brian Morison
- Bill Auguer
- bill-auger
- Caio Jordão Carvalho
- Camilo Higuita
- Christophe Marin
- Collabora LTD
- Corey Lang
- crispg72
- dalto8
- Dan Simmons
- demmm
- DemonKiller
- Dominic Hayes
- El-Wumbus
- Emir SARI
- Emmanuel Arias
- Enrique Medina Gremaldos
- Erik Dubois
- Evan Goode
- Evan James
- Evan Maddock
- Ficelloo
- Frede Hundewadt
- Frede H
- Gabriel Craciunescu
- Gaël PORTAY
- GeckoLinux
- Harald Sitter
- Hector Martin
- Huang Jia Wen
- huxingyi
- Ivan Borzenkov
- Jeremy Attali
- Jeremy Whiting
- Jerrod Frost
- Jia Chao
- Johannes Kamprad
- Jonas Strassel
- Jonathan Esk-Riddell
- Kai Dohmen
- Kasra Hashemi
- Kevin Kofler
- Kyle Robertze
- Lisa Vitolo
- Lukas Märdian
- Mario Haustein
- Masato TOYOSHIMA
- Matti Hyttinen
- n3rdopolis
- Neal Gompa
- Nico 'dr460nf1r3'
- Omer I.S.
- Panda
- Paolo Dongilli
- Peter Jung
- Philip Müller
- Ramon Buldó
- Raul Rodrigo Segura
- Rohan Garg
- Santosh Mahto
- Scott Harvey
- shivanandvp
- Simon Quigley
- Sunderland93
- Sławomir Lach
- Taejun Park
- Tj
- Victor Fuentes
- Vitor Lopes
- vtriolet
- Walter Lapchynski
- Waneon Kim
- wiz64
> This list was updated to revision 283668cb0155c1c14739bb3b51db3d5d0b39c8e2 on February 17th 2024.

503
CHANGES Normal file
View File

@ -0,0 +1,503 @@
This is the changelog for Calamares. For each release, the major changes and
contributors are listed. Note that Calamares does not have a historical
changelog -- this log starts with version 3.2.0. The release notes on the
website will have to do for older versions.
# 3.2.13 (unreleased) #
This release contains contributions from (alphabetically by first name):
- Arnaud Ferraris
- Arnaud Rebillout
## Core ##
- The Calamares standard coding style -- embodied in `ci/calamaresstyle`
has had a few updates and has now been consistently applied across
the core codebase (e.g. libcalamares, libcalamaresui, calamares, but
not the modules).
- *KCoreAddons* is now a required dependency. This lets us drop a chunk
of code that was copied from KCoreAddons years ago, and use the
(maintained!) upstream version instead. It also gives us KMacroExpander
everywhere, which will simplify code for handling substitutions
in configuration files.
## Modules ##
- The *packagechooser* module can load data from the config-file,
from AppData XML files referred by the config-file, and (new) also
from AppStream caches by referring to an application's AppStream id. #1212
- The *partition* module now understands the units *KB*, *MB*, *GB* which
are powers-of-ten sizes, alongside the powers-of-two sizes that it already
used. (thanks to Arnaud)
- The *welcome* module now supports a *Donate* button if *showDonateUrl*
is set to a non-empty URL. #1197
- The *welcome* module can have URLs for the various buttons configured
directly in the module configuration (rather than in `branding.desc`).
# 3.2.12 (2019-08-07) #
This release contains contributions from (alphabetically by first name):
- apt-ghetto
- Bill Auger
- embar
## Core ##
- Preliminary work to allow jobs to have a *weight* assigned to them
has been added. This will allow the progress bar to better reflect
progress by the amount of work done rather than purely by the
number of jobs. (Thanks to Bill Auger)
- Preliminary work has been added to post the installation log to a
pastebin for bug reporting. (Thanks to Bill Auger)
- Support for translated human-readable strings in Calamares
config files has been added. This is used only in the *packagechooser*
module (see below) but will expand to those modules that need
user-visible strings from the configuration file (existing
solutions need either gettext or Qt support).
- Esperanto is now available when Qt version 5.12.2 or later is used.
## Modules ##
- *fstab* A new configuration key *efiMountOptions* has been added, to
allow setting filesystem options specifically for the EFI partition.
(Thanks to apt-ghetto)
- *packagechooser* is a new module for low-density package choices,
e.g. for selecting a default desktop environment, or adding some
proprietary drivers, or chosing browsers of office suites. It presents
**one** collection of items -- at most ten or so, because of the UI --
and the user can select zero or more of them. The behavior is
configurable, and package information can be set through the Calamares
configuration file or by reading AppData files for the packages. #426
# 3.2.11 (2019-07-06) #
This release contains contributions from (alphabetically by first name):
- No other contributors this time around.
This is a security release with no functional changes (except for
improved security) relative to 3.2.10. The Calamares team would like
to acknowledge the help of the following people in reporting and
understanding the issues (alphabetically by first name):
- Kevin Kofler
- Seth Arnold
- Simon Quigley
- Thomas Ward
Both CVE's have been resolved.
## Core ##
No core changes.
## Modules ##
- *initramfs* could create an initramfs with insecure permissions.
Since the keyfile is included in the initramfs, an attacker could
read the file from the initramfs. #1190 CVE-2019-13178
- *luksbootkeyfile* created a key file where a window of opportunity
existed where the key file could have too-lax file permissions.
#1191 CVE-2019-13179
# 3.2.10 (2019-06-28) #
This release contains contributions from (alphabetically by first name):
- No other contributors this time around.
Distributions are **advised** to check the slideshow they use for the
installation step; changes in loading and translation mechanisms may
require changes in the slideshow.
## Core ##
- With this release, option *WITH_PYTHONQT* changes default to **off**.
There does not seem to be any serious use of the PythonQt API and
the UI opportunities it offers, so begin the process of deprecating
and removing that. Sometime in the future, QML pages will fill the
gap for easily-prototyped-yet-slick UI elements.
- A crash when no *finished* page (or rather, no page at all) is
configured after the last *exec* section of the sequence has been
solved. The *finished* page can be left out (but then you don't get
the restart-now functionality). #1168
- The *slideshow* which is run during installation now has API versions.
API version 1 (the default) runs as before, where the slideshow is loaded
when the installation starts. API version 2 loads the slideshow on
Calamares startup, thus improving responsiveness. Documentation
in `src/branding/README.md`. #1152
- The example slideshow now uses API version 2.
## Modules ##
- *initramfs* has been changed from a Python module to a C++ module.
Packaging will need to adjust now it installs a .so instead of a .py.
The module itself functions as before. It does have a new configuration
option, to change the version passed as to the `-k` option of
update-initramfs. #1180
- *partition* Now has its own setting for *requiredStorage*, duplicating
the same setting in the *welcome* module. This is useful for
configurations where no *welcome* module is used, but a minimum
size must be checked anyway. #1169
# 3.2.9 (2019-06-03) #
This release contains contributions from (alphabetically by first name):
- Kevin Kofler
## Core ##
No user- or deployer-visible changes. Bugfixing as usual, see the
milestone for details.
## Modules ##
- *branding* now supports os-release variables in the *strings* section,
which allows re-using (at runtime) information set in /etc/os-release .
This requires KDE Frameworks 5.58. #1150
- *branding* allows the use of FreeDesktop.org icon names for the
*productLogo* and *productIcon* keys. If a file is named there, then
the file is used, and otherwise the icon is looked up in the current
theme. #1160
- *packages* On Arch, with the `pacman` package manager, avoid a hang
during system update. #1154
- *welcome* allows a custom image path or icon name to be set for the
language-selection drop-down (instead of the international standard one).
# 3.2.8 (2019-05-10) #
This is a **source-incompatible** release of Calamares. Include files
have been shuffled around, so third-party C++ modules will need
adjustment to the changed names.
This release contains contributions from (alphabetically by first name):
- Arnaud Ferraris
- Kevin Kofler
## Core ##
- All user-visible texts referring to "MB" and "GB" now use the standard
"MiB" and "GiB" wording, which matches what we were actually calculating
with (i.e. 2^20 and 2^30 respectively). #1129
- The side-pane, which shows the list of steps that will be executed,
now tries to fit the text (name of each module) into the available space
by shrinking the font as needed. #1137
- *libcalamares* (accidentally) linked with Qt's GUI libraries when
PythonQt was found. This led to the odd situation where the non-GUI
Calamares library depends on a bunch of GUI libraries.
- *libcalamares* The `utils/` subdirectory has been hugely refactored,
with functionality split out into separate files. C++ modules will
need to have their `#include` names updated. Basically, users of
`utils/CalamaresUtils.h` will need to include the header file for
the functionality that is actually used.
## Modules ##
- *finished* has a new mechanism for configuring the behavior of the
*restart now* button. The old-style boolean configuration is still
supported but generates a warning. #1138
- *locale* module GeoIP configuration has a new preferred format.
See `locale.conf` for details. The old configuration is still
supported but will be phased out before 3.3.0 -- in particular,
support for "legacy" format will be removed, since that was a
crutch for the disappearance of one GeoIP provider in 2018.
- *oemid* is a new module for configuring OEM phase-0 (image pre-mastering,
or pre-deployment) things. It has limited functionality at the moment,
writing only a single batch-identifier file. #943
- *welcome* can now do GeoIP lookups as well (but be careful with the
configuration, since you need a GeoIP that provides country information,
not just timezones). This will let Calamares select a starting language
that matches where it is -- which might not be useful at all. #934
- All Python modules now bail out gracefully on (at least some) bad
configurations, rather than raising an exception. The pre-release
scripts now test for exceptions to avoid shipping modules with
ImportError or SyntaxError results.
# 3.2.7 (2019-04-27) #
This is a **hotfix** release for regressions introduced in the
Python modules. The *localecfg* module was unusable because of
a missing `import`.
# 3.2.6 (2019-04-25) #
This release contains contributions from (alphabetically by first name):
- Arnaud Ferraris
- Dominic Hayes (feren)
- Raul Rodrigo Segura (raurodse)
## Core ##
* Under-the-hood code cleanups in lots of parts of the core. Calamares now
builds without warnings when Clang 8 is used.
* A new *disable-cancel-during-exec* setting provides more fine-grained
control than *disable-cancel*, which hides the button entirely.
#1122 (Thanks to Dominic, FerenOS)
* A branding module can now also cause a stylesheet to be loaded, which
will be applied to the widgets inside Calamares. #961 (Thanks to Raul)
## Modules ##
* All of the Python-based modules now have translations enabled. #991
* *Displaymanager* module has improved support for LightDM configuration.
#1123 (Thanks to Dominic, FerenOS)
* *License* module can now display local files inline, and scrolls to
allow longer lists of licenses and to support long license texts
displayed inline. #1124 #1125 #1052
* *Partition* module has additional checks for validity partition layouts.
#1127 (Thanks to Arnaud)
* *Welcome* module has improved usability: a standard icon
alongside the *Language* label, for improved recognition,
and improved language-list display and sorting. #1107
# 3.2.5 (2019-04-15) #
This release contains contributions from (alphabetically by first name):
- Arnaud Ferraris
- Dan Simmons
- Gabriel Craciunescu
## Core ##
* View modules (in C++) can now perform their own requirements-checking
to see if installation makes sense. This expands upon the existing
requirements checks in the welcome module (RAM, disk space, ..).
The checks have been made asynchronous, so that responsiveness during
requirements-checking is improved and the user has better feedback.
* Support for building an AppImage of Calamares has been added to the
`ci/` directory. There are use-cases where a containerized build and
configuration make sense rather than having Calamares installed in the
host system. (Thanks to the AppImage team, Alexis)
* OEM mode (phase-1) now correctly refers to Calamares as a "Setup Program"
rather than an installer. #1100 (Thanks to Arnaud)
## Modules ##
* *Bootloader* module: a serious bug introduced in 3.2.4 which prevents
succesful boot after installation on EFI machines, has been repaired.
(Thanks to Gabriel) #1104
* *Displaymanager* module: it is no longer a fatal error to not have any
display-managers. #1095
* *Partition* module: it is now possible to build without libparted. Since
KPMCore may not need this library anymore, it is a dependency that will
be dropped as soon as it is feasible. Add this to the CMake flags:
`-DCMAKE_DISABLE_FIND_PACKAGE_LIBPARTED=ON`
* *Partition* module: the location that is selected for the bootloader,
no longer changes when a new partition is created. #1098
* Python modules: several modules have had translations added. This is
usually only visible when the module runs as part of the *exec* step,
when the module's *pretty name* is displayed. In addition, some error
messages are now translated.
* *UnpackFS* module: improved progress reporting and tests. #565
# 3.2.4 (2019-02-12) #
This release contains contributions from (alphabetically by first name):
- Alf Gaida
- aliveafter1000
- Arnaud Ferraris
- Caio Jordão Carvalho
- Collabora LTD
- Gabriel Craciunescu
- Kevin Kofler
- Philip Mueller
- Scott Harvey
## Core ##
* The Calamares application now recognizes the `-X` or `--xdg-config`
option, which adds XDG_DATA_DIRS to the places used to find QML
and branding directories, and XDG_CONFIG_DIRS to the places used
to find the global settings and module configurations. This allows
a more fine-grained, and more layered, approach to setting up
Calamares configurations (in particular, distro's can **add**
configuration files and give them priority, instead of **forking**
configuration files).
* The *branding* file now contains settings that control the size
and resize behavior of Calamares. See the branding file for
more documentation. In particular, the setting *windowExpanding*
can be set to *normal*, *fullscreen* or *noexpand*.
* The `settings.conf` file can now configure whether the *Cancel* button
is shown (this isn't a branding thing, because it's quite fundamental
to the workflow of the installer).
## Modules ##
* The *partition* module supports RAID devices, but only when Calamares
is compiled with the newest KPMCore release (3.3.0).
* The calculation of required space -- including swap -- has been simplified,
and Calamares no longer reserves 2GiB of space in calculations for internal
use (this means that it no longer mysteriously drops swap when the disk
size is close to the required installation size).
* The name of the type of default filesystem (e.g. ext4 or btrfs) is now handled
case- and localization-insensitively. This means that *btrfs* is now always
an acceptable spelling.
* The currently-selected disk device is remembered between manual partitioning
and the partitioning-overview pages. (Thanks to Arnaud)
* *partition* There is new support for partitioning layout presets.
See `partition.conf` for documentation and details.
* The *keyboard* module now handles the (bogus) Austrian keymap for
the system console properly. (Thanks to Kevin)
* The *preservefiles* module now has a mechanism for setting the permissions
(and ownership) of preserved files. (Thanks to Scott)
* New module *fsresizer* can be used to resize filesystems. It is intended
for use in OEM installs where an image of fixed size is created,
and then sized to the actual SD card the user has used.
* The *mount* module now handles missing *extraMounts* and *extraMountsEfi*
keys gracefully (this is probably a misconfiguration, though, and gives a
warning).
* The *packages* module now supports pre- and post-script options
for all operations, not just during install (keep in mind that
these run as three separate shells, though).
* A new *rawfs* module supports straightforward copying of filesystems from
the installation media to the target stystem. This can be used, for instance,
for block-level-identical installations.
# 3.2.3 (2019-01-09) #
This release contains contributions from (alphabetically by first name):
- aliveafter1000
## Core ##
There are no core changes in this release.
## Modules ##
* *partition* Fixed bug where, during detection of existing systems, the
existing system partitions may be mounted and then files deleted.
This is a **limited** version of the patch from aliveafter1000
that will be in 3.2.4, which tries harder to mount filesystems
read-only and unmodifiable.
* *locale* It was possible to set the installer and system language
(e.g. to German) while the global storage value for *locale*
remained set to English. Then no localization packages are installed
(see feature `${LOCALE}` in `packages.conf`). Reported downstream
in Netrunner.
# 3.2.2 (2018-09-04) #
This release contains contributions from (alphabetically by first name):
- Andrius Štikonas
- artoo@cromnix.org
- Caio Jordão Carvalho
- Harald Sitter
- Philip Müller
- Simon Quigley
- Walter Lapchynski
## Core ##
* Example configurations are **no longer installed** by default.
The default setting for *INSTALL_CONFIG* has changed. Distributions
are strongly encouraged to write their own configuration files and
not rely on the example configuration files. Example configurations
may change unpredictably.
* It is now possible to express module dependencies through the
*requiredModules* key in `module.desc`. All of the required modules
for a given module must occur in the sequence **before** the module
requiring them. None of the core modules use this facility.
* The search paths for QML files, branding descriptors and module
descriptors have been revamped and now self-document in the log.
* A new `ci/RELEASE.sh` script has been added to streamline releases;
it is not guaranteed to work anywhere in particular though.
## Modules ##
* When multiple modules are mutually exclusive, or don't make sense
to enable concurrectly, a new `USE_<foo>` framework has been added
to CMake to simplify the selection of modules. This is in addition
to the existing `SKIP_MODULES` mechanism.
* Various off-by-one-sector errors in the automatic partitioning
mode have been corrected. In addition, swap space is calculated
a little more conservatively.
* A new module has been added to the core which can configure openrc
services. To make services configuration consistent:
- The *services* module has been **renamed** *services-systemd*,
- The openrc module is named *services-openrc*,
- At CMake time, it is possible to select all of the services modules,
or one specific one, by setting the *USE_services* CMake variable.
By default, all of the modules are built and installed.
* The systemd-services module can now disable targets and mask both
targets and services (which will allow you to break the system with
a bad configuration). The configuration is a little more flexible
because a service (or target) name can be used on its own with
sensible defaults.
* The displaymanager module has been entirely revamped. A long-standing
bug which ignored the settings for default desktop has been fixed
(thanks to Walter Lapchynski). Translations have been added to the
error messages. Each DM now has an implementation class for doing
all the configuration steps it needs. This groups the code needed for
a specific DM (and presumably, per-distro) in one place.
Distro's are **strongly advised** to re-test their DM configuration
and installation with the revamped code.
# 3.2.1 (2018-06-25) #
This release contains contributions from (alphabetically by first name):
- Bill Auguer
- Gabriel Craciunescu
- Phil Mueller
- Raul Rodrigo Segura
## Core ##
* Qt 5.7 is now the minimum required Qt version. Because KPMCore
(a fairly fundamental dependency) requires Qt 5.7, Calamares
has followed suit.
* New testing application `loadmodule` for loading and running a
single Calamares module.
* New translations Belarussian and Korean.
* Jobs can now be *emergency jobs* which run even after a failure.
* Improved debugging when modules fail to load.
* Bad configuration files will now cause the user-interface of
Calamares to display an error message, rather than silently
ignoring some configuration errors. This will certainly cause
problems for distributions with sloppy configurations.
## Modules ##
* New module preservefiles, keeps (log) files around after install;
this duplicates functionality with the unmount module, but unmount
is very late, rather limited, and fragile.
* Interactiveterminal module now disables itself if build requirements
are not met, rather than blocking the build.
* Fixes in the timezone map data make the southern hemisphere more
usable and put Reykjavik in its place.
* The packages module can now update the target system if explicitly
told to do so.
* More paths and executables are configurable in the bootloader module.
* Distributions are advised to review the `users.conf` setup **again**,
as some changes in version 3.2.0 caused regressions downstream.
* Distributions are advised to review their `locale.gen` files
**again**. Previous changes were too restrictive, matching only
the specific format Chakra Linux uses. Calamares now preserves
all the comment-lines in the file and writes enabled locales
at the end, with a descriptive comment.
# 3.2.0 (2018-05-17) #
This release contains contributions from (alphabetically by first name):
- Alf Gaida
- AlmAck
- Caio Jordão Carvalho
- Frede H
## Modules ##
* UI annoyances in the partitioning module were fixed; the
mount-point selector is now more obvious when no mount-point
has been chosen, and the mount-point and flags are preserved
when (re)editing partitions.
* The handling of `@@ROOT@@` substitution in shellprocesses was
backwards; this has been fixed (the substitution is made when
running in the **host**).
* The user shell is no longer hard-coded to `/bin/bash`,
but follows the default setting for useradd(8), e.g.
those set in `/etc/default/useradd`.

File diff suppressed because it is too large Load Diff

View File

@ -1,571 +0,0 @@
<!-- SPDX-FileCopyrightText: no
SPDX-License-Identifier: CC0-1.0
-->
This is the changelog for Calamares. For each release, the major changes and
contributors are listed. Note that Calamares does not have a historical
changelog -- this log starts with version 3.3.0. See CHANGES-3.2 for
the history of the 3.2 series (2018-05 - 2022-08).
# 3.3.12 (2024-11-21)
This release contains contributions from (alphabetically by given name):
- Adriaan de Groot
## Core ##
- This release repairs the Calamares configuration file which is
used by external Calamares modules -- calamares-extensions in particular.
## Modules ##
- *users* module always uses a 3-digit UMASK if one is specified.
# 3.3.11 (2024-11-05)
This release contains contributions from (alphabetically by given name):
- Adriaan de Groot
- Jakob Petsovits
- Simon Quigley
## Core ##
- Nothing yet
## Modules ##
- *unpackfs* now supports a `condition` configuration option for
conditional installation / unsquash. (thanks Simon)
- *unpackfsc* module imported from Calamares-extensions, and extended
with the same `condition` configuration.
- *partition* crash fixed when swap was using the wrong end-sector
in some GPT configurations. (thanks Jakob, #2367)
# 3.3.10 (2024-10-21)
This release contains contributions from (alphabetically by given name):
- Aaron Rainbolt
- Adriaan de Groot
- Evan James
- Neal Gompa
## Core ##
- Nothing yet
## Modules ##
- *keyboard* Repaired summary messages with strange formatting. (#2364)
- *keyboard* Can update KDE Plasma configuration in Wayland. (thanks Neal, #2264)
- *locale* Repaired summary messages with strange formatting. (#2364)
- *partition* Module fixed unwanted behavior with the encryption checkbox. (thanks Aaron, #2376)
- *umount* Correctly unmounts the root filesystem of the target. (thanks Evan)
- *users* Supports a new `home_permissions` setting to override the
distro's `useradd` configuration of the umask. Supports octal and rwx-style
specifications of permissions. Other places that use permissions now also
support octal and rwx-style. (#2362)
- *welcome* Follows system styling colors (e.g. Dark Mode).
# 3.3.9 (2024-08-12)
Please note that if you are using the *luksbootkeyfile* module,
it must be placed before the *fstab* module in settings.conf. If it comes
after, then the keyfile will be missing from crypttab and the user will be
asked for their password multiple times.
This release contains contributions from (alphabetically by given name):
- Adriaan de Groot
- Evan James
- Luca Matei Pintilie
## Core ##
- Improved schemas for configuration files
- Support for Interlingue in Qt 6.7
## Modules ##
- Placed *luksbootkeyfile* before *fstab* in the example `settings.conf` (#2356, Evan)
- *packages* module `xbcs` package manager now logs progress messages (#2359, Luca)
- *partition* module mentions creating a swap file in its summary (#2320, Adriaan)
# 3.3.8 (2024-07-02)
The *partition* bug described below was reported by jghodd, then carefully
described and made reproducible by Joe Kamprad, examined by Evan James
and repaired by Adriaan de Groot. Many thanks to all who participated.
This release contains contributions from (alphabetically by first name):
- Adriaan de Groot
- Evan James
- Lorenzo Faletra
- Tj
- Victor Fuentes
## Core ##
- nothing in particular
## Modules ##
- *contextualprocess* see *shellprocess*.
- *mount* module now correctly mounts luks and luks2-encrypted swap. (thanks Victor)
- *partition* avoids a crash with specific checkbox-presets. (thanks Evan)
- *partition* had a bug where manual partitioning on MBR systems might
skip the installation of a bootloader, even though the visible bootloader
combo-box showed that it would be installed. (see #2318)
- *partition* could calculate an incorrect partition size when installing to
very specific partition sizes, and now leaves a few more sectors for secondary
GPT tables. (thanks Tj)
- *shellprocess* now supports a *verbose* key (globally and per-command) which logs
command output line-by-line.
- *users* module defaults password salt to *yescrypt*. (thanks Lorenzo)
# 3.3.7 (2024-06-20)
This release contains contributions from (alphabetically by first name):
- Adriaan de Groot
- Eugene San
- Evan James
- Ivan Borzenkov
- Sohrab Behdani
- Vincent Penvern
- Vladislav Nepogodin
## Core ##
- Updated clang-formatting
- Some C++20 future-proofing (thanks Vladislav)
- CommandList (used by *contextualprocess* and *shellprocess*) now supports
globalstorage keys as substitutable variables.
## Modules ##
- *contextualprocess* see *shellprocess*.
- *fstab* module does not add an encryption keyfile if it does
not exist. (thanks Eugene)
- *initcpiocfg* has some new configuration settings to more carefully
adjust hooks for initcpio.
- *keyboard* module handles Persian (fa) layout better. (thanks Sohrab)
- *keyboard* module handles other non-ascii layout better. (thanks Ivan)
- *partition* module did not filter out invalid fstab entries;
they were not written, either, so no net change.
- *partition* module now has a configurable default check-state
for the encryption checkbox. (thanks Vincent)
- *shellprocess* commands now support globalstorage variables, which
are written as `${gs[key]}`, where `key` is a dotted string that
selects the globalstorage key to use (like in *contextualprocess*
variable-selectors) and `${gs[` and `]}` are literal characters.
# 3.3.6 (2024-04-16)
This release contains contributions from (alphabetically by first name):
- Adriaan de Groot
- Anke Boersma
- Eugene San
- Evan James
- Harald Sitter
- Mike Stemle
- Peter Jung
- Simon Quigley
## Core ##
- Various Qt6-related fixes.
- Calamares now prevents sleep and suspend while the installation is
running, so that unattended installs do not accidentally fall asleep.
## Modules ##
- *bootloader* Adds "splash" to kernel parameters if plymouth is present.
(thanks Eugene)
- *locale* Now picks the correct timezone for Dubai, Muscat, Tehran.
- *plymouthcfg* Use plymouth-set-default-theme to avoid issues with
configuration. (thanks Peter)
- *users* module now supports enrolling in Active Directory, if enabled.
(thanks Simon)
# 3.3.5 (2024-03-03)
This release contains contributions from (alphabetically by first name):
- Adriaan de Groot
- Evan James
- Peter Jung
## Core ##
- Calamares logs more information about how the executable was created
in the session log on startup. This will help in recreating the specific
configuration when bug reports are filed. (thanks Evan)
- The debug window now has better Qt6 compatibility.
## Modules ##
- *displaymanager* module can configure an alternate SDDM configuration file.
- *networkcfg* a bug affecting NetPlan + NetworkManager was fixed.
- *initcpiocfg* Add microcode hook to initcpiocfg
# 3.3.4 (2024-02-27)
In this release, process jobmodules -- a particular kind of module
recognizable by `type: job` and `interface: process` in the descriptor
file -- undergo a large change to resemble *shellprocess* more.
Users of process jobmodules are encouraged to double-check the Functionality
of those modules in this release.
This release contains contributions from (alphabetically by first name):
- Adriaan de Groot
- Victor Fuentes
## Core ##
- Process jobs (a job type provided by Calamares core) now share more
code with *contextualprocess* and *shellprocess* jobs. The execution
mechanism is the same, and always invokes the shell, whether the command
runs in the host or in the target system. It is no longer necessary to
add `/bin/sh` in the *command* key -- this is always present.
## Modules ##
- *contextualprocess* and *shellprocess* can now set environment variables
as part of the configuration. See *shellprocess* documentation for details.
This is optional, and does not do anything that could not already be done
by putting `export VAR=value ;` in front of the command before.
- *partition* fixed a bug with an uninitialized variable. (thanks Victor)
- *shellprocess* (and therefore also *contextualprocess* and process
jobmodules) now substitutes `${LANG}` in commands with the language
selected in the user-interface of Calamares.
# 3.3.3 (2024-02-24)
This release contains contributions from (alphabetically by first name):
- Adriaan de Groot
- Anke Boersma
Translations have been updated (3.3.2 skipped that step).
## Core ##
- Core libraries *libcalamares* and *libcalamaresui* now build with
hidden visibility by default, as a step towards ABI stability.
- A runtime crash caused by (mis?)use of Qt UniqueConnection which
shows up in Debug builds was resolved.
## Modules ##
- *interactiveterminal* can use konsole in Qt6 too. (thanks Anke)
- *plasmalnf* module ported to Plasma 6. (thanks Anke)
- *welcomeq* example extended to include Markdown syntax. (thanks Anke)
# 3.3.2 (2024-02-19)
This release contains contributions from (alphabetically by first name):
- Aaron Rainbolt
- Adriaan de Groot
- Anke Boersma
- Evan James
- Jonathan Riddell
- Lukas Märdian
- Tj
## Core ##
- Slideshow support code (QML) now ported to Qt6 and made available
as two separate directories of support-code. (thanks Jon)
- Compatibility with Qt versions prior to 5.15.5 has been removed.
## Modules ##
- *fstab* bug fixed where BTRFS messes up the partition layout. (thanks Tj)
- *networkcfg* on NetPlan-enabled systems, configure NetworkManager
with the live-system's NetPlan settings. (thanks Lukas)
- *partition* module can now also define unencrypted partitions
when encryption is used. (thanks Aaron)
# 3.3.1 (2024-01-15)
This release sets `BUILD_APPDATA` and `BUILD_APSTREAM` to default to **OFF**,
where previously they defaulted to **ON**. When enabled, the dependencies for
both features are required -- previously they would silently switch off if
the dependencies were not found. Distributions are strongly advised to check
their package-building instructions.
This release contains contributions from (alphabetically by first name):
- Adriaan de Groot
- Aleksey Samoilov
- Emir Sari
- Simon Quigley
## Core ##
- There has been internal code re-organization (e.g. not using functions
named `tr()`) to help translation tools.
- Strings everywhere have been given more context. (thanks Emir)
- In CMake, "view" is no longer accepted as an alias of the module
type "viewmodule" in function `calamares_add_plugin()`.
- Plain Ubuntu builds have been added to the CI roster. (thanks Simon)
- Commands that run in the target system (in the chroot) no longer
use the TMP-related environment variables from the host. #2269
## Modules ##
- The *displaymanager* module configuration for `greetd` has some more
options now. (thanks Aleksey)
# 3.3.0 (2023-12-12)
This release contains contributions from (alphabetically by first name):
- Adriaan de Groot
- Alberto Salvia Novella
- Christophe Marin
- Evan Maddock
- Frede Hundewadt
Since this is the first non-alpha release of 3.3.0, we would like to thank
all the contributors to a year and a half of alpha releases, six in all.
Distributions are **strongly** advices to take the release notes of
the alpha's into account as well.
## Core ##
- No changes of note.
## Modules ##
- *users* and *usersq* no longer support the password requirement 'nonempty'.
Use 'minLength: 1' instead. The example configuration allows the user to
choose any password at all, but also contains suggestions for other
password-requirements schemes. (thanks Alberto)
- *users* now can use stronger password hashes, if `crypt_gensalt()` is
available in the *crypt* library. (thanks Evan)
- *machineid* module supports several variations of writing /etc/machine-id .
# 3.3.0-alpha6 (2023-11-16)
This release contains contributions from (alphabetically by first name):
- Adriaan de Groot
- Anke Boersma
This is a hotfix release because -alpha5 didn't compile,
and Anke repaired the partition unit-tests when building with Qt6.
# 3.3.0-alpha5 (2023-11-13)
This release contains contributions from (alphabetically by first name):
- Adriaan de Groot
- Alejo Fernandez
- Anke Boersma
- Christophe Marin
- Emir Sari
- Evan James
- Gaël PORTAY
- Gecko Linux
- Jeremy Whiting
- Neal Gompa
## Core ##
- Boost::Python is no longer a dependency, Calamares uses a bundled copy
of pybind11 instead. This speeds up compilation and reducese the
dependency tree a great deal. You can set `WITH_PYBIND11=OFF` in the
build to keep Boost::Python and all the binary-compatibility problems
it entails.
- Coding style now wants clang-format 15 or 16, but no longer needs astyle.
There is also a clang-tidy file for additional styling support.
- Ongoing translation improvements. (thanks Emir)
- Translations for bqi (Luri), es_AR (Castellano), eo (Esperanto),
ka (Georgian). In **non-release** builds (e.g. between releases,
so for developers building directly from git) all translations are
enabled, even the ones with no translations at all.
- The logging format in the `session.log` file and on-screen is now
more similar, although the file contains a lot more per-line information.
- The INSTALL_CONFIG option has been restored. It is still a terrible
idea to fork the repository to modify the config files, and you
probably should have a calamares-config package with those files
instead, there are packaging workflows that can usefully patch-and-
install configuration files. The option defaults to OFF.
## Modules ##
- All QML modules now have a Qt6-compatible set of QML files as well. (thanks Anke)
- *packagechooser* supports AppStream 1.0 API.
- *unpackfs* now uses the `-S` option to rsync for sparse file support. (thanks Jeremy)
# 3.3.0-alpha4 (2023-10-13)
Another closing-in-on-3.3.0 release! One of the big changes is that
Calamares -- the core and nearly all of the modules in this repository --
are compatible with Qt6. That is, it compiles. Functionality has not
been tested, but early-testing distributions are encouraged to submit
pull requests to improve the code.
This release contains contributions from (alphabetically by first name):
- Adriaan de Groot
- Anke Boersma
- Emir Sari
- Evan James
- Hector Martin
- Ivan Borzenkov
- Simon Quigley
## Core ##
- Qt6 compatibility. You can choose Qt5 (with KDE Frameworks 5) as before,
or choose Qt6 (with KDE Frameworks 6). This means that a Qt6-based Linux
distribution can use Calamares without needing an extra version of Qt.
Note that some KDE Frameworks are required as well, and those need to be
Qt6-based also (and are not released as of September 2023).
- QML-based modules are also supported in Qt6, but the QML is likely to
be source-incompatible. The *welcomeq* module shipped with Calamares
now has two `.qrc` files and uses the `${QT_VERSION_SUFFIX}` variable
to pick one of the two depending on the Qt version being used.
Other modules are likely to follow the same pattern.
- C++ namespaces have been shuffled around and `CalamaresUtils` has been
retired. This has an effect on all C++ plugins, since this is neither
a binary- nor source-compatible change.
## Modules ##
- *keyboard* module can now be explicitly configured to use X11 keyboard
settings or the FreeDesktop locale1 DBus service. The latter is most
useful for Calamares as an "initial setup" system, not an installer,
in a Wayland session. (thanks Hector)
- *keyboard* module now writes X11 layout configuration with variants
for all non-ASCII (e.g. us) layouts. (thanks Ivan)
- *keyboard* module now can configure keyboard switch. (thanks Ivan)
# 3.3.0-alpha3 (2023-08-28)
This release contains contributions from (alphabetically by first name):
- Adriaan de Groot
- Aleksey Samoilov
- Anke Boersma
- Arjen Balfoort
- Boria138
- Brian Morison
- Emir Sari
- Evan Goode
- Evan James
- Ficelloo
- Hector Martin
- Jeremy Attall
- Johannes Kamprad
- Kasta Hashemi
- Kevin Kofler
- Mario Haustein
- Masato TOYOSHIMA
- Panda
- Paolo Dongilli
- Peter Jung
- Philip Müller
- Shivanand
- Sławomir Lach
- Sunderland93
- wiz64
## Core ##
- Incompatible module-configuration changes, see #1438.
- Branding entries use ${var} instead of @{var} for substitutions,
in line with all the other substitution mechanisms used from C++
core. See documentation in `branding.desc`.
- Boost::Python requires at least version 1.72.
- KDE Frameworks must be version 5.58 or later.
- The `INSTALL_CONFIG` option has been removed. If you are installing
the example configuration files from the Calamares repository, just
stop. That was never a good idea, and you should keep your configs elsewhere.
- Progress percentage during install can now be localized. (thanks Emir)
## Modules ##
- *dracut* added a configurable kernel name. (thanks Anke)
- *initcpiocfg* orders hookds slightly differently. (thanks Peter)
- *localeq* moved to using Drawer instead of ComboBox in UI. (thanks Anke)
- *keyboardq* moved to using Drawer instead of ComboBox in UI. (thanks Anke)
- *netinstall* now has a new *noncheckable* option for groups, which prevent
it a group from being checked/uncheckd as a whole. You can still check
individual items **in** the group though. (thanks Shivanand)
- *partition* can now pick LUKS or LUKS2. (thanks Jeremy)
- *zfs* creates a hostid through zgenhostid.
- *zfshostid* new module to copy zfs generated /etc/hostid
# 3.3.0-alpha2 (2022-08-23)
Second alpha release, with updated ABI compatibility checking,
some 3.3.0 release goals, new features in modules and important bugfixes.
This release contains contributions from (alphabetically by first name):
- Adriaan de Groot
- Anke Boersma
- Evan James
- Shivanand
- Vitor Lopes
## Core ##
A core **TODO** is moving all library code into the `Calamares` namespace,
dropping the `CalamaresUtils` namespace. Modern C++ supports nested namespaces,
so in some cases we can use those. This has a drastic effect on ABI compatibility,
though, as functions move from one namespace to another. This needs to be
completed before a 3.3.0 with ABI stability is released.
## Modules ##
Module schemas have been updated to reflect all the incompatible changes.
# 3.3.0-alpha1 (2022-06-27)
Initial 3.3.0 alpha release to check the release scripts &c.
This release contains contributions from (alphabetically by first name):
- Adriaan de Groot
- Aleksey Samoilov
- Anke Boersma
- Dan Simmons
- Evan James
- Peter Jung
# 3.3.0-pre-alpha (unreleased) #
This release contains contributions from (alphabetically by first name):
- Anke Boersma
- Anubhav Choudhary
- Evan James
- Vitor Lopes
This is a "minor" version change, but the size of the changes is very
large. Configuration files from previous versions of Calamares will
**certainly** need to be re-validated. Take heed of the many changes
in the *Modules* heading, below.
Users (distributions) are **strongly** advised to use the tools
for configuration validation (`ci/configvalidator.py`) to check
that the distribution configuration files follow the current schema.
## Project ##
- The C++ code in the project is now formatted with clang-format 12 or 13,
with the coding-style as found in `.clang-format`; there are minor
differences from the tool, compared to the clang-format 9 usually applied
to Calamares 3.2.
- The CMake code in the project is now formatted with gersemi 0.7.5.
## Core ##
- CMake 3.16, Qt 5.15 are now required; the newer CMake is to support
new features (also for KDE Frameworks), Qt is the current LTS version.
- Running `calamares -d` no longer enforces a single-application
(it is for debugging purposes, after all).
- Python 3.6 or later is now required, to allow for F-strings in
Python code and allow other tidy-ups in the Python modules.
Boost::Python now requires 1.67 or later (for CMake support).
- The log file now **always** contains a debug-log, and the `-D` flag
primarily controls what is printed to stdout. By default, stdout
only gets errors; use `-D6` to match stdout with the file. Use `-D8`
to get an extra-verbose log file **and** verbose stdout.
## Modules ##
- *bootloader* now supports more options when building the kernel
command-line. (Thanks Evan)
- *bootloader* no longer supports `@@`-style suffixes for unique-EFI-id
generation. Use `${}` instead.
- *displaymanager* no longer supports the discontinued *kdm* display manager.
- *fstab* configuration has been completely re-done. Many configuration
options have moved to the *mount* module. See #1993
- *grubcfg* changed the key *keepDistributor* to *keep_distributor*.
Please update configurations.
- *mount* now does most of the mounting; options that were in *fstab*
have moved here. See #1993
- *oemid* now uses consistent variable replacement (e.g. KMacroExpander)
and does not support `@@DATE@@` anymore (use `${DATE}`).
- *partition* requires KPMCore 21.12 (e.g. KPMCore 4.2 API, or later).
- *partition* can now skip installing the bootloader in more scenarios.
#1632 (Thanks Anubhav)
- *preservefiles* follows `${}` variable syntax instead of `@@`.

File diff suppressed because it is too large Load Diff

View File

@ -1,86 +0,0 @@
# === This file is part of Calamares - <https://calamares.io> ===
#
# SPDX-FileCopyrightText: 2023 Adriaan de Groot <groot@kde.org>
# SPDX-License-Identifier: BSD-2-Clause
#
###
#
# Finds AppStream-Qt suitable for the Qt version that is in use.
# Creates target calamares::appstreamqt to alias whatever is found.
# Sets AppStreamQt_FOUND appropriately, regardless of the underlying
# variables (e.g. might be AppStreamQt6_FOUND).
#
option(BUILD_APPSTREAM "Support appstream: items in PackageChooser (requires libappstream-qt)" OFF)
if(TARGET calaappstream)
if(TARGET calamares::appstreamqt)
message(STATUS "AppStreamQt has already been found")
set(AppStreamQt_FOUND TRUE)
else()
message(STATUS "AppStreamQt has been searched-for and not found")
set(AppStreamQt_FOUND FALSE)
endif()
return()
endif()
if(NOT BUILD_APPSTREAM)
return()
endif()
### FIND APPSTREAM
#
# First, look for a Qt-versioned variety of the package.
# If that is not found, look for an unversioned one.
set(HAVE_APPSTREAM OFF)
find_package(AppStream${qtname})
# Not everyone renames the variables consistently
if(AppStream${qtname}_FOUND OR AppStreamQt_FOUND)
set(_appstream_name AppStream${qtname})
set(HAVE_APPSTREAM ON)
else()
find_package(AppStreamQt)
if(AppStreamQt_FOUND)
set(_appstream_name AppStreamQt)
# TODO: how to check underlying Qt version?
set(HAVE_APPSTREAM ON)
endif()
endif()
if(HAVE_APPSTREAM)
# Look for the directory name containing the headers
find_file(_appstream_header NAMES ${_appstream_name}/pool.h AppStreamQt/pool.h)
if(NOT _appstream_header)
set(HAVE_APPSTREAM OFF)
else()
if(_appstream_header MATCHES /${_appstream_name}/)
set(_appstream_header_directory ${_appstream_name})
else()
set(_appstream_header_directory AppStreamQt)
endif()
endif()
else()
# Placeholder name
set(_appstream_name AppStreamQt)
endif()
set(_appstream_dependency_type OPTIONAL)
if(BUILD_APPSTREAM)
set(_appstream_dependency_type REQUIRED)
endif()
set_package_properties(
${_appstream_name}
PROPERTIES
DESCRIPTION "Support for AppStream (cache) data"
URL "https://github.com/ximion/appstream"
PURPOSE "AppStream provides package data"
TYPE ${_appstream_dependency_type}
)
add_library(calaappstream INTERFACE) # Always, but might not be populated
if(HAVE_APPSTREAM)
target_compile_definitions(calaappstream INTERFACE HAVE_APPSTREAM_VERSION=${${_appstream_name}_VERSION_MAJOR} HAVE_APPSTREAM_HEADERS=${_appstream_header_directory})
target_link_libraries(calaappstream INTERFACE ${_appstream_name})
add_library(calamares::appstreamqt ALIAS calaappstream)
endif()
set(AppStreamQt_FOUND ${HAVE_APPSTREAM})

View File

@ -0,0 +1,78 @@
# On Ubuntu 14.04, the libboost-python1.54-dev package comes with one library
# for each Python version:
# libboost_python-py27.so
# libboost_python-py33.so
# libboost_python-py34.so
#
# Boost upstream however installs Boost.Python3 libboost_python3.so, which is
# what FindBoost.cmake is looking for. It looks for a library named
# "libboost_${component}.so".
#
# On Gentoo instead, the >=dev-libs/boost-1.54 package provides boost library
# with a name like:
# libboost_python-2.7.so
# libboost_python-3.3.so
# libboost_python-3.4.so
# depending on what python's targets you selected during install
#
# On Fedora >= 30 instead, the boost-python3-devel provides boost library with a
# name like:
# libboost_python37.so
# depending on what python's targets you selected during install
#
# find_boost_python3() tries to find the package with different component
# names. By default it tries "python3", "python-py$suffix" and
# "python-$dotsuffix", where suffix is based on the `python_version` argument.
# One can supply a custom component name by setting the
# `CALAMARES_BOOST_PYTHON3_COMPONENT` variable at CMake time.
set( CALAMARES_BOOST_PYTHON3_COMPONENT python3 CACHE STRING
"Name of the Boost.Python component. If Boost.Python is installed as
libboost_python-foo.so then this variable should be set to 'python-foo'."
)
include(FindPackageHandleStandardArgs)
macro( _find_boost_python3_int boost_version componentname found_var )
foreach( _fbp_name ${CALAMARES_BOOST_PYTHON3_COMPONENT} ${componentname} )
find_package( Boost ${boost_version} QUIET COMPONENTS ${_fbp_name} )
string( TOUPPER ${_fbp_name} _fbp_uc_name )
if( Boost_${_fbp_uc_name}_FOUND )
set( ${found_var} ${_fbp_uc_name} )
break()
endif()
endforeach()
endmacro()
macro( find_boost_python3 boost_version python_version found_var )
set( ${found_var} OFF )
set( _fbp_found OFF )
# turns "3.4.123abc" into "34"
string( REGEX REPLACE "([0-9]+)\\.([0-9]+)\\..*" "\\1\\2" _fbp_python_short_version ${python_version} )
_find_boost_python3_int( ${boost_version} python-py${_fbp_python_short_version} _fbp_found )
if (NOT _fbp_found)
_find_boost_python3_int( ${boost_version} python${_fbp_python_short_version} _fbp_found )
endif()
if (NOT _fbp_found)
# The following loop changes the searched name for Gentoo based distributions
# turns "3.4.123abc" into "3.4"
string( REGEX REPLACE "([0-9]+)\\.([0-9]+)\\..*" "\\1.\\2" _fbp_python_short_version ${python_version} )
_find_boost_python3_int( ${boost_version} python-${_fbp_python_short_version} _fbp_found )
endif()
set( ${found_var} ${_fbp_found} )
# This is superfluous, but allows proper reporting in the features list
if ( _fbp_found )
find_package( Boost ${boost_version} COMPONENTS ${_fbp_found} )
else()
find_package( Boost ${boost_version} COMPONENTS Python )
endif()
set_package_properties(
Boost PROPERTIES
DESCRIPTION "A C++ library which enables seamless interoperability between C++ and Python 3."
URL "http://www.boost.org"
)
endmacro()

View File

@ -1,14 +1,3 @@
# === This file is part of Calamares - <https://calamares.io> ===
#
# SPDX-FileCopyrightText: 2014 Teo Mrnjavac <teo@kde.org>
# SPDX-FileCopyrightText: 2014 Kevin Kofler <kevin.kofler@chello.at>
# SPDX-FileCopyrightText: 2017 Adriaan de Groot <groot@kde.org>
# SPDX-License-Identifier: BSD-2-Clause
#
###
#
# Defines a handful of strings that, with normal xterm handling,
# will change colors in the output, so it's nicer to read.
if(NOT WIN32)
set(_use_color ON)
if("0" STREQUAL "$ENV{CLICOLOR}")

View File

@ -0,0 +1,23 @@
find_program(DATE_EXECUTABLE NAMES date)
mark_as_advanced(DATE_EXECUTABLE)
if(DATE_EXECUTABLE)
execute_process(
COMMAND ${DATE_EXECUTABLE} +%Y
OUTPUT_VARIABLE CMAKE_DATESTAMP_YEAR
OUTPUT_STRIP_TRAILING_WHITESPACE
WORKING_DIRECTORY ${CMAKE_SOURCE_DIR}
)
execute_process(
COMMAND ${DATE_EXECUTABLE} +%m
OUTPUT_VARIABLE CMAKE_DATESTAMP_MONTH
OUTPUT_STRIP_TRAILING_WHITESPACE
WORKING_DIRECTORY ${CMAKE_SOURCE_DIR}
)
execute_process(
COMMAND ${DATE_EXECUTABLE} +%d
OUTPUT_VARIABLE CMAKE_DATESTAMP_DAY
OUTPUT_STRIP_TRAILING_WHITESPACE
WORKING_DIRECTORY ${CMAKE_SOURCE_DIR}
)
endif()

View File

@ -0,0 +1,45 @@
# Try to identify the current development source version.
set(CMAKE_VERSION_SOURCE "")
if(EXISTS ${CMAKE_SOURCE_DIR}/.git/HEAD)
find_program(GIT_EXECUTABLE NAMES git git.cmd)
mark_as_advanced(GIT_EXECUTABLE)
if(GIT_EXECUTABLE)
execute_process(
COMMAND ${GIT_EXECUTABLE} rev-parse --verify -q --short=7 HEAD
OUTPUT_VARIABLE head
OUTPUT_STRIP_TRAILING_WHITESPACE
WORKING_DIRECTORY ${CMAKE_SOURCE_DIR}
)
if(head)
set(branch "")
execute_process(
COMMAND ${GIT_EXECUTABLE} name-rev HEAD
OUTPUT_VARIABLE branch
OUTPUT_STRIP_TRAILING_WHITESPACE
WORKING_DIRECTORY ${CMAKE_SOURCE_DIR}
)
string(REGEX REPLACE "HEAD " "" branch "${branch}")
set(CMAKE_VERSION_SOURCE "git-${branch}-${head}")
execute_process(
COMMAND ${GIT_EXECUTABLE} update-index -q --refresh
WORKING_DIRECTORY ${CMAKE_SOURCE_DIR}
)
execute_process(
COMMAND ${GIT_EXECUTABLE} diff-index --name-only HEAD --
OUTPUT_VARIABLE dirty
OUTPUT_STRIP_TRAILING_WHITESPACE
WORKING_DIRECTORY ${CMAKE_SOURCE_DIR}
)
if(dirty)
set(CMAKE_VERSION_SOURCE "${CMAKE_VERSION_SOURCE}-dirty")
endif()
endif()
endif()
elseif(EXISTS ${CMAKE_SOURCE_DIR}/CVS/Repository)
file(READ ${CMAKE_SOURCE_DIR}/CVS/Repository repo)
set(branch "")
if("${repo}" MATCHES "\\.git/")
string(REGEX REPLACE ".*\\.git/([^\r\n]*).*" "-\\1" branch "${repo}")
endif()
set(CMAKE_VERSION_SOURCE "cvs${branch}")
endif()

View File

@ -1,11 +1,20 @@
# === This file is part of Calamares - <https://calamares.io> ===
# === This file is part of Calamares - <https://github.com/calamares> ===
#
# SPDX-FileCopyrightText: 2014 Teo Mrnjavac <teo@kde.org>
# SPDX-FileCopyrightText: 2017 Adriaan de Groot <groot@kde.org>
# SPDX-License-Identifier: BSD-2-Clause
# Calamares is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Calamares is Free Software: see the License-Identifier above.
# Calamares is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Calamares. If not, see <http://www.gnu.org/licenses/>.
#
# SPDX-License-Identifier: GPL-3.0+
# License-Filename: LICENSE
#
###
#
@ -61,11 +70,7 @@ function( calamares_add_branding NAME )
foreach( BRANDING_COMPONENT_FILE ${BRANDING_COMPONENT_FILES} )
set( _subpath ${_brand_dir}/${BRANDING_COMPONENT_FILE} )
if( NOT IS_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}/${_subpath} )
set( _src ${CMAKE_CURRENT_SOURCE_DIR}/${_subpath} )
set( _dst ${CMAKE_CURRENT_BINARY_DIR}/${_subpath} )
if( ${_src} IS_NEWER_THAN ${_dst} )
configure_file( ${_src} ${_dst} COPYONLY )
endif()
configure_file( ${_subpath} ${_subpath} COPYONLY )
install( FILES ${CMAKE_CURRENT_BINARY_DIR}/${_subpath}
DESTINATION ${BRANDING_COMPONENT_DESTINATION}/${_subdir}/ )
@ -101,7 +106,7 @@ function( calamares_add_branding_translations NAME )
file( GLOB BRANDING_TRANSLATION_FILES RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "${SUBDIRECTORY}/lang/calamares-${NAME}_*.ts" )
if ( BRANDING_TRANSLATION_FILES )
qt_add_translation( QM_FILES ${BRANDING_TRANSLATION_FILES} )
qt5_add_translation( QM_FILES ${BRANDING_TRANSLATION_FILES} )
add_custom_target( branding-translation-${NAME} ALL DEPENDS ${QM_FILES}
COMMAND ${CMAKE_COMMAND} -E make_directory ${CMAKE_CURRENT_BINARY_DIR}/${SUBDIRECTORY}/lang/
COMMAND ${CMAKE_COMMAND} -E copy ${QM_FILES} ${CMAKE_CURRENT_BINARY_DIR}/${SUBDIRECTORY}/lang/

View File

@ -1,11 +1,20 @@
# === This file is part of Calamares - <https://calamares.io> ===
# === This file is part of Calamares - <https://github.com/calamares> ===
#
# SPDX-FileCopyrightText: 2014 Teo Mrnjavac <teo@kde.org>
# SPDX-FileCopyrightText: 2017 Adriaan de Groot <groot@kde.org>
# SPDX-License-Identifier: BSD-2-Clause
# Calamares is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Calamares is Free Software: see the License-Identifier above.
# Calamares is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Calamares. If not, see <http://www.gnu.org/licenses/>.
#
# SPDX-License-Identifier: GPL-3.0+
# License-Filename: LICENSE
#
###
#
@ -53,8 +62,10 @@ function(calamares_add_library)
include_directories(${CMAKE_CURRENT_BINARY_DIR})
# add resources from current dir
if(LIBRARY_RESOURCES)
list(APPEND LIBRARY_SOURCES ${LIBRARY_RESOURCES})
if(EXISTS "${CMAKE_CURRENT_LIST_DIR}/${LIBRARY_RESOURCES}")
qt5_add_resources(LIBRARY_RC_SOURCES "${LIBRARY_RESOURCES}")
list(APPEND LIBRARY_SOURCES ${LIBRARY_RC_SOURCES})
unset(LIBRARY_RC_SOURCES)
endif()
# add target
@ -62,19 +73,14 @@ function(calamares_add_library)
add_library(${target} STATIC ${LIBRARY_SOURCES})
elseif(LIBRARY_TARGET_TYPE STREQUAL "MODULE")
add_library(${target} MODULE ${LIBRARY_SOURCES})
elseif(LIBRARY_TARGET_TYPE STREQUAL "SHARED")
add_library(${target} SHARED ${LIBRARY_SOURCES})
else() # default
message(FATAL_ERROR "Invalid library type '${LIBRARY_TARGET_TYPE}'")
add_library(${target} SHARED ${LIBRARY_SOURCES})
endif()
calamares_automoc(${target})
if(LIBRARY_UI)
calamares_autouic(${target} ${LIBRARY_UI})
endif()
if(LIBRARY_RESOURCES)
calamares_autorcc(${target} ${LIBRARY_RESOURCES})
endif()
if(LIBRARY_EXPORT_MACRO)
set_target_properties(${target} PROPERTIES COMPILE_DEFINITIONS ${LIBRARY_EXPORT_MACRO})
@ -87,10 +93,11 @@ function(calamares_add_library)
# add link targets
target_link_libraries(${target}
LINK_PUBLIC ${Calamares_LIBRARIES}
${qtname}::Core
${qtname}::Gui
${qtname}::Widgets
LINK_PUBLIC ${CALAMARES_LIBRARIES}
Qt5::Core
Qt5::Gui
Qt5::Widgets
${LIBRARY_QT5_MODULES}
)
if(LIBRARY_LINK_LIBRARIES)
target_link_libraries(${target} LINK_PUBLIC ${LIBRARY_LINK_LIBRARIES})

View File

@ -1,94 +1,53 @@
# === This file is part of Calamares - <https://calamares.io> ===
# === This file is part of Calamares - <https://github.com/calamares> ===
#
# SPDX-FileCopyrightText: 2014 Teo Mrnjavac <teo@kde.org>
# SPDX-FileCopyrightText: 2017 Adriaan de Groot <groot@kde.org>
# SPDX-License-Identifier: BSD-2-Clause
# Calamares is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Calamares is Free Software: see the License-Identifier above.
# Calamares is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Calamares. If not, see <http://www.gnu.org/licenses/>.
#
# SPDX-License-Identifier: GPL-3.0+
# License-Filename: LICENSE
#
###
#
# Function and support code for adding a Calamares module (either a Qt / C++ plugin,
# or a Python module, or whatever) to the build.
#
# # Usage
#
# The public API is one single function:
#
# - calamares_add_module_subdirectory(subdirectory [skiplistvar])
# Adds a given *subdirectory* to the modules list, building the
# module that is there. The *subdirectory* must contain a `module.desc`
# (generally non-C++ modules) or a `CMakeLists.txt` (for C++ modules,
# or special cases). The module is assumed to be named after the
# (last component of) the subdirectory.
#
# If the module would be skipped (by the global SKIP_MODULES setting
# or a USE_* setting) or the module itself sets a reason to skip
# via the calamares_skip_module() function, the module is added to
# the list of skipped-modules in *skiplistvar*. If no variable is
# given, the reason is set in the parent scope variable
# SKIPPED_MODULES . Do **not** use SKIPPED_MODULES as the name of
# *skiplistvar*, things will get weird.
#
# Do note that the name of a module must be the same as the name of
# the directory containing it (as documented in src/modules/README.md).
# This applies to both C++ and Python modules, and allows the use of
# the subdirectory as a proxy for the module name inside.
#
include( CalamaresAddTranslations )
include( CalamaresCheckModuleSelection )
set( MODULE_DATA_DESTINATION share/calamares/modules )
# We look for Pylint (just once) so that unittests can be added that
# check the syntax / variables of Python modules. This should help
# avoid more typo's-in-releases.
if(BUILD_TESTING AND NOT PYLINT_COMMAND_SEARCHED)
set(PYLINT_COMMAND_SEARCHED TRUE)
find_program(
PYLINT_COMMAND
NAMES pylint3 pylint
PATHS $ENV{HOME}/.local/bin
)
endif()
# Convenience function to indicate that a module has been skipped
# (optionally also why). Call this in the module's CMakeLists.txt
macro( calamares_skip_module )
set( SKIPPED_MODULES ${SKIPPED_MODULES} ${ARGV} PARENT_SCOPE )
endmacro()
function( _calamares_add_module_subdirectory_impl )
function( calamares_explain_skipped_modules )
if ( ARGN )
message( "${ColorReset}-- Skipped modules:" )
foreach( SUBDIRECTORY ${ARGN} )
message( "${ColorReset}-- Skipped ${BoldRed}${SUBDIRECTORY}${ColorReset}." )
endforeach()
message( "" )
endif()
endfunction()
function( calamares_add_module_subdirectory )
set( SUBDIRECTORY ${ARGV0} )
# Set SKIPPED_MODULES here, so CMake-based modules have a
# parent scope to set it in; this function, in turn sets it
# in **its** parent scope.
set( SKIPPED_MODULES "" )
set( SKIPPED_MODULES )
set( MODULE_CONFIG_FILES "" )
# The module subdirectory may be given as a/b/c, but the module
# needs to be installed as "c", so we split off any intermediate
# directories.
#
# Compute _modulename (the last directory name) and _mod_dir
# (the full path to the module sources).
get_filename_component(_dirname "${SUBDIRECTORY}" DIRECTORY)
if( _dirname )
# Remove the dirname and any leftover leading /s
string( REGEX REPLACE "^${_dirname}/*" "" _modulename "${SUBDIRECTORY}" )
else()
set( _modulename ${SUBDIRECTORY} )
endif()
# Strip any remaining /
string( REGEX REPLACE "/" "" _modulename "${_modulename}" )
set( _mod_dir "${CMAKE_CURRENT_SOURCE_DIR}/${SUBDIRECTORY}" )
# Skip list check applies to all kinds of modules
calamares_check_skip( ${_modulename} SKIPPED_MODULES )
if ( SKIPPED_MODULES )
# If it's skipped by infrastucture, the message already includes the module
# name. We don't need to do any further checking.
set( SKIPPED_MODULES "${SKIPPED_MODULES}" PARENT_SCOPE )
return()
endif()
# If this subdirectory has a CMakeLists.txt, we add_subdirectory it...
if( EXISTS "${_mod_dir}/CMakeLists.txt" )
add_subdirectory( ${SUBDIRECTORY} )
@ -98,21 +57,11 @@ function( _calamares_add_module_subdirectory_impl )
if ( SKIPPED_MODULES )
set( SKIPPED_MODULES ${SKIPPED_MODULES} PARENT_SCOPE )
set( MODULE_CONFIG_FILES "" )
else()
# The SKIPPED_MODULES may be set in the directory itself
get_directory_property( _skip DIRECTORY ${SUBDIRECTORY} DEFINITION SKIPPED_MODULES )
if ( _skip )
set( SKIPPED_MODULES ${_skip} PARENT_SCOPE )
set( MODULE_CONFIG_FILES "" )
endif()
endif()
if ( SKIPPED_MODULES )
return()
endif()
# ...otherwise, we look for a module.desc.
elseif( EXISTS "${_mod_dir}/module.desc" )
set( MODULES_DIR ${CMAKE_INSTALL_LIBDIR}/calamares/modules )
set( MODULE_DESTINATION ${MODULES_DIR}/${_modulename} )
set( MODULE_DESTINATION ${MODULES_DIR}/${SUBDIRECTORY} )
# Read module.desc, check that the interface type is supported.
#
@ -121,12 +70,11 @@ function( _calamares_add_module_subdirectory_impl )
# _mod_testing boolean if the module should be added to the loadmodule tests
file(STRINGS "${_mod_dir}/module.desc" MODULE_INTERFACE REGEX "^interface")
if ( MODULE_INTERFACE MATCHES "pythonqt" )
message( FATAL_ERROR "PythonQt is no longer supported" )
set( _mod_enabled OFF )
set( _mod_enabled ${WITH_PYTHONQT} )
set( _mod_reason "No PythonQt support" )
set( _mod_testing OFF )
elseif ( MODULE_INTERFACE MATCHES "python" )
set( _mod_enabled ${Calamares_WITH_PYTHON} )
set( _mod_enabled ${WITH_PYTHON} )
set( _mod_reason "No Python support" )
set( _mod_testing ON ) # Will check syntax and imports, at least
elseif ( MODULE_INTERFACE MATCHES "qtplugin" )
@ -153,35 +101,35 @@ function( _calamares_add_module_subdirectory_impl )
get_filename_component( FLEXT ${MODULE_FILE} EXT )
if( "${FLEXT}" STREQUAL ".conf" )
message(STATUS "Config ${MODULE_FILE}")
if( INSTALL_CONFIG )
install( FILES ${CMAKE_CURRENT_BINARY_DIR}/${SUBDIRECTORY}/${MODULE_FILE}
DESTINATION ${MODULE_DATA_DESTINATION} )
endif()
list( APPEND MODULE_CONFIG_FILES ${MODULE_FILE} )
else()
message(STATUS "Non-Config ${MODULE_FILE}")
install( FILES ${CMAKE_CURRENT_BINARY_DIR}/${SUBDIRECTORY}/${MODULE_FILE}
DESTINATION ${MODULE_DESTINATION} )
endif()
endif()
endforeach()
message( "-- ${BoldYellow}Found ${CALAMARES_APPLICATION_NAME} module: ${BoldRed}${_modulename}${ColorReset}" )
message( "-- ${BoldYellow}Found ${CALAMARES_APPLICATION_NAME} module: ${BoldRed}${SUBDIRECTORY}${ColorReset}" )
message( " ${Green}TYPE:${ColorReset} jobmodule" )
message( " ${Green}MODULE_DESTINATION:${ColorReset} ${MODULE_DESTINATION}" )
if( MODULE_CONFIG_FILES )
if (INSTALL_CONFIG)
message(" ${Green}CONFIGURATION_FILES:${ColorReset} ${MODULE_CONFIG_FILES} => [Build directory and ${MODULE_DATA_DESTINATION}]")
foreach(_cf ${MODULE_CONFIG_FILES})
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/${SUBDIRECTORY}/${_cf} DESTINATION ${MODULE_DATA_DESTINATION})
endforeach()
if ( INSTALL_CONFIG )
set( _destination "${MODULE_DATA_DESTINATION}" )
else()
message(" ${Green}CONFIGURATION_FILES:${ColorReset} ${MODULE_CONFIG_FILES} => [Build directory only]")
set( _destination "[Build directory only]" )
endif()
message( " ${Green}CONFIGURATION_FILES:${ColorReset} ${MODULE_CONFIG_FILES} => ${_destination}" )
endif()
message( "" )
# We copy over the lang directory, if any
if( IS_DIRECTORY "${_mod_dir}/lang" )
if( IS_DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}/${SUBDIRECTORY}/lang" )
install_calamares_gettext_translations(
${SUBDIRECTORY}
SOURCE_DIR "${_mod_dir}/lang"
SOURCE_DIR "${CMAKE_CURRENT_SOURCE_DIR}/${SUBDIRECTORY}/lang"
FILENAME ${SUBDIRECTORY}.mo
RENAME calamares-${SUBDIRECTORY}.mo
)
@ -210,78 +158,15 @@ function( _calamares_add_module_subdirectory_impl )
endforeach()
endif()
# Adding general tests
#
# Add a check that the module can be loaded. Since this calls exec(), the module
# Check that the module can be loaded. Since this calls exec(), the module
# may try to do things to the running system. Needs work to make that a
# safe thing to do.
#
# If the module has a tests/ subdirectory with *.global and *.job
# files (YAML files holding global and job-configurations for
# testing purposes) then those files are used to drive additional
# tests. The files must be numbered (starting from 1) for this to work;
# 1.global and 1.job together make the configuration for test 1.
#
# If the module has a tests/CMakeLists.txt while it doesn't have its
# own CMakeLists.txt (e.g. a Python module), then the subdirectory
# for tests/ is added on its own.
#
if ( BUILD_TESTING AND _mod_enabled AND _mod_testing )
add_test(
NAME load-${SUBDIRECTORY}
COMMAND loadmodule ${SUBDIRECTORY}
WORKING_DIRECTORY ${CMAKE_BINARY_DIR}
)
# Try it with the tests/ configurations shipped with the module
set( _count 1 )
set( _testdir ${_mod_dir}/tests )
while ( EXISTS "${_testdir}/${_count}.global" OR EXISTS "${_testdir}/${_count}.job" )
set( _dash_g "" )
set( _dash_j "" )
if ( EXISTS "${_testdir}/${_count}.global" )
set( _dash_g -g ${_testdir}/${_count}.global )
endif()
if ( EXISTS "${_testdir}/${_count}.job" )
set( _dash_j -j ${_testdir}/${_count}.job )
endif()
add_test(
NAME load-${SUBDIRECTORY}-${_count}
COMMAND loadmodule ${_dash_g} ${_dash_j} ${SUBDIRECTORY}
WORKING_DIRECTORY ${CMAKE_BINARY_DIR}
)
math( EXPR _count "${_count} + 1" )
endwhile()
if ( EXISTS ${_testdir}/CMakeTests.txt AND NOT EXISTS ${_mod_dir}/CMakeLists.txt )
include( ${_testdir}/CMakeTests.txt )
endif()
if ( PYLINT_COMMAND AND MODULE_INTERFACE MATCHES "python" )
# Python modules get an additional test via pylint; this
# needs to run at top-level because the ci/libcalamares directory
# contains API stubs.
#
# TODO: the entry point is assumed to be `main.py`, but that is
# configurable through module.desc
add_test(
NAME lint-${SUBDIRECTORY}
COMMAND env PYTHONPATH=ci: ${PYLINT_COMMAND} -E ${_mod_dir}/main.py
WORKING_DIRECTORY ${CMAKE_SOURCE_DIR}
)
endif()
endif()
endfunction()
function( calamares_add_module_subdirectory )
set( SUBDIRECTORY ${ARGV0} )
set( _ams_SKIP_LIST ${ARGV1} )
set( SKIPPED_MODULES "" )
_calamares_add_module_subdirectory_impl( ${SUBDIRECTORY} )
if ( SKIPPED_MODULES )
if ( _ams_SKIP_LIST )
list( APPEND ${_ams_SKIP_LIST} "${SKIPPED_MODULES}" )
set( ${_ams_SKIP_LIST} "${${_ams_SKIP_LIST}}" PARENT_SCOPE )
else()
set( SKIPPED_MODULES "${SKIPPED_MODULES}" PARENT_SCOPE )
endif()
endif()
endfunction()

View File

@ -1,11 +1,20 @@
# === This file is part of Calamares - <https://calamares.io> ===
# === This file is part of Calamares - <https://github.com/calamares> ===
#
# SPDX-FileCopyrightText: 2014 Teo Mrnjavac <teo@kde.org>
# SPDX-FileCopyrightText: 2019 Adriaan de Groot <groot@kde.org>
# SPDX-License-Identifier: BSD-2-Clause
# Calamares is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Calamares is Free Software: see the License-Identifier above.
# Calamares is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Calamares. If not, see <http://www.gnu.org/licenses/>.
#
# SPDX-License-Identifier: GPL-3.0+
# License-Filename: LICENSE
#
###
#
@ -19,7 +28,7 @@
#
# calamares_add_plugin(
# module-name
# TYPE <viewmodule|job>
# TYPE <view|job>
# EXPORT_MACRO macro-name
# SOURCES source-file...
# UI ui-file...
@ -29,13 +38,11 @@
# [RESOURCES resource-file]
# [REQUIRES module-name...]
# [NO_INSTALL]
# [NO_CONFIG]
# [SHARED_LIB]
# [EMERGENCY]
# [WEIGHT w]
# )
#
# Function optional parameters:
# Function parameters:
# - COMPILE_DEFINITIONS
# Definitions are set on the resulting module with a suitable
# flag (i.e. `-D`) so only state the name (optionally, also the value)
@ -55,33 +62,17 @@
# - EMERGENCY
# If this is set, the module is marked as an *emergency* module in the
# descriptor. See *Emergency Modules* in the module documentation.
# - WEIGHT
# If this is set, writes an explicit weight into the module.desc;
# module weights are used in progress reporting.
#
#
# This function follows the global SKIP_MODULES and USE_* settings, so
# a plugin may be skipped -- then nothing will be built. In that case,
# SKIPPED_MODULES is set in the parent (i.e. caller's) scope with the
# reason why. This should rarely be a concern as AddModuleSubdirectory
# already handles skip-reasons and collects them for reporting.
#
# The target defined this way is called "calamares_<TYPE>_<module-name>",
# e.g. "calamares_viewmodule_packagechooserq". The function sets a variable
# in its **calling** scope, `<module-name>_TARGET` with the full name
# of the target.
include( CMakeParseArguments )
include( CalamaresAddLibrary )
include( CalamaresCheckModuleSelection )
include( CMakeColors )
function( calamares_add_plugin )
# parse arguments ( name needs to be saved before passing ARGN into the macro )
set( NAME ${ARGV0} )
set( options NO_CONFIG NO_INSTALL SHARED_LIB EMERGENCY )
set( oneValueArgs NAME TYPE EXPORT_MACRO RESOURCES WEIGHT )
set( options NO_INSTALL SHARED_LIB EMERGENCY )
set( oneValueArgs NAME TYPE EXPORT_MACRO RESOURCES )
set( multiValueArgs SOURCES UI LINK_LIBRARIES LINK_PRIVATE_LIBRARIES COMPILE_DEFINITIONS REQUIRES )
cmake_parse_arguments( PLUGIN "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN} )
set( PLUGIN_NAME ${NAME} )
@ -93,34 +84,22 @@ function( calamares_add_plugin )
set( CMAKE_LIBRARY_OUTPUT_DIRECTORY "${CMAKE_CURRENT_BINARY_DIR}" )
set( CMAKE_ARCHIVE_OUTPUT_DIRECTORY "${CMAKE_CURRENT_BINARY_DIR}" )
calamares_check_skip( ${NAME} _skip)
if ( _skip )
set( SKIPPED_MODULES "${_skip}" PARENT_SCOPE )
return()
endif()
message( "-- ${BoldYellow}Found ${CALAMARES_APPLICATION_NAME} module: ${BoldRed}${PLUGIN_NAME}${ColorReset}" )
message( " ${Green}TYPE:${ColorReset} ${PLUGIN_TYPE}" )
message( " ${Green}LINK_LIBRARIES:${ColorReset} ${PLUGIN_LINK_LIBRARIES}" )
message( " ${Green}LINK_PRIVATE_LIBRARIES:${ColorReset} ${PLUGIN_LINK_PRIVATE_LIBRARIES}" )
message( " ${Green}PLUGIN_DESTINATION:${ColorReset} ${PLUGIN_DESTINATION}" )
if( PLUGIN_CONFIG_FILES )
if( PLUGIN_NO_CONFIG )
message( FATAL_ERROR "${Red}NO_CONFIG${ColorReset} is set, with configuration ${Red}${PLUGIN_CONFIG_FILES}${ColorReset}" )
endif()
set( _destination "(unknown)" )
if(INSTALL_CONFIG AND NOT PLUGIN_NO_INSTALL)
set(_destination "${PLUGIN_DATA_DESTINATION}")
if ( INSTALL_CONFIG AND NOT PLUGIN_NO_INSTALL )
set( _destination "${PLUGIN_DATA_DESTINATION}" )
elseif( NOT PLUGIN_NO_INSTALL )
# Not INSTALL_CONFIG
set( _destination "[Build directory only]" )
else()
set( _destination "[Skipping installation]" )
endif()
message( " ${Green}CONFIGURATION_FILES:${ColorReset} ${PLUGIN_CONFIG_FILES} => ${_destination}" )
else()
if( NOT PLUGIN_NO_CONFIG )
message( " ${Red}NO_CONFIG${ColorReset} should be set." )
endif()
endif()
if( PLUGIN_RESOURCES )
message( " ${Green}RESOURCES:${ColorReset} ${PLUGIN_RESOURCES}" )
@ -130,15 +109,6 @@ function( calamares_add_plugin )
# create target name once for convenience
set( target "calamares_${PLUGIN_TYPE}_${PLUGIN_NAME}" )
# automatic library linkage
if(PLUGIN_TYPE STREQUAL "viewmodule")
list(APPEND PLUGIN_LINK_PRIVATE_LIBRARIES Calamares::calamaresui)
elseif(PLUGIN_TYPE STREQUAL "job")
list(APPEND PLUGIN_LINK_PRIVATE_LIBRARIES Calamares::calamares)
else()
message(FATAL_ERROR "Unknown plugin type ${PLUGIN_TYPE}")
endif()
# determine target type
if( NOT ${PLUGIN_SHARED_LIB} )
set( target_type "MODULE" )
@ -200,34 +170,19 @@ function( calamares_add_plugin )
if ( PLUGIN_EMERGENCY )
file( APPEND ${_file} "emergency: true\n" )
endif()
if ( PLUGIN_NO_CONFIG )
file( APPEND ${_file} "noconfig: true\n" )
endif()
if ( PLUGIN_WEIGHT )
file( APPEND ${_file} "weight: ${PLUGIN_WEIGHT}\n" )
endif()
endif()
if ( NOT PLUGIN_NO_INSTALL )
install( FILES ${CMAKE_CURRENT_BINARY_DIR}/${PLUGIN_DESC_FILE}
DESTINATION ${PLUGIN_DESTINATION} )
set( _warned_config OFF )
foreach( PLUGIN_CONFIG_FILE ${PLUGIN_CONFIG_FILES} )
if( ${CMAKE_CURRENT_SOURCE_DIR}/${PLUGIN_CONFIG_FILE} IS_NEWER_THAN ${CMAKE_CURRENT_BINARY_DIR}/${PLUGIN_CONFIG_FILE} )
configure_file( ${PLUGIN_CONFIG_FILE} ${PLUGIN_CONFIG_FILE} COPYONLY )
else()
message( " ${BoldYellow}Not updating${ColorReset} ${PLUGIN_CONFIG_FILE}" )
set( _warned_config ON )
endif()
if(INSTALL_CONFIG)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/${PLUGIN_CONFIG_FILE} DESTINATION ${PLUGIN_DATA_DESTINATION})
configure_file( ${PLUGIN_CONFIG_FILE} ${PLUGIN_CONFIG_FILE} COPYONLY )
if ( INSTALL_CONFIG )
install(
FILES ${CMAKE_CURRENT_BINARY_DIR}/${PLUGIN_CONFIG_FILE}
DESTINATION ${PLUGIN_DATA_DESTINATION} )
endif()
endforeach()
if ( _warned_config )
message( "" )
endif()
endif()
set(${NAME}_TARGET ${target} PARENT_SCOPE)
endfunction()

View File

@ -1,56 +0,0 @@
# === This file is part of Calamares - <https://calamares.io> ===
#
# SPDX-FileCopyrightText: 2020 Adriaan de Groot <groot@kde.org>
# SPDX-License-Identifier: BSD-2-Clause
#
# Calamares is Free Software: see the License-Identifier above.
#
#
###
#
# Support functions for building Calamares tests.
# This extends KDE's ECM tests with some custom patterns.
#
# calamares_add_test(
# <NAME>
# [GUI]
# [RESOURCES FILE]
# SOURCES <FILE..>
# )
include(CMakeParseArguments)
include(CalamaresAutomoc)
function(calamares_add_test name)
set(options GUI)
set(oneValueArgs RESOURCES)
set(multiValueArgs SOURCES LIBRARIES DEFINITIONS)
cmake_parse_arguments(TEST "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
set(TEST_NAME ${name})
if(ECM_FOUND AND BUILD_TESTING)
ecm_add_test(
${TEST_SOURCES} ${TEST_RESOURCES}
TEST_NAME
${TEST_NAME}
LINK_LIBRARIES
Calamares::calamares
${TEST_LIBRARIES}
${qtname}::Core
${qtname}::Test
)
calamares_automoc( ${TEST_NAME} )
# We specifically pass in the source directory of the test-being-
# compiled, so that it can find test-files in that source dir.
target_compile_definitions(
${TEST_NAME}
PRIVATE -DBUILD_AS_TEST="${CMAKE_CURRENT_SOURCE_DIR}" ${TEST_DEFINITIONS}
)
if(TEST_GUI)
target_link_libraries(${TEST_NAME} Calamares::calamaresui ${qtname}::Gui)
endif()
if(TEST_RESOURCES)
calamares_autorcc( ${TEST_NAME} ${TEST_RESOURCES} )
endif()
endif()
endfunction()

View File

@ -1,26 +1,121 @@
# === This file is part of Calamares - <https://calamares.io> ===
# === This file is part of Calamares - <https://github.com/calamares> ===
#
# SPDX-FileCopyrightText: 2017 Adriaan de Groot <groot@kde.org>
# SPDX-License-Identifier: BSD-2-Clause
# Calamares is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Calamares is Free Software: see the License-Identifier above.
# Calamares is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Calamares. If not, see <http://www.gnu.org/licenses/>.
#
# SPDX-License-Identifier: GPL-3.0+
# License-Filename: LICENSE
#
###
#
# This file has not yet been documented for use outside of Calamares itself.
include(CMakeParseArguments)
include(FeatureSummary)
include( CMakeParseArguments )
# The Gettext module is still old-fashioned, ALLCAPS variables
find_package( Gettext )
set_package_properties( GETTEXT PROPERTIES
DESCRIPTION "GNU gettext (translation) tools."
URL "https://www.gnu.org/software/gettext/"
PURPOSE "Gettext is used in the translation of Python modules."
TYPE REQUIRED
)
if( NOT _rcc_version_support_checked )
set( _rcc_version_support_checked TRUE )
# Extract the executable name
get_property( _rcc_executable
TARGET ${Qt5Core_RCC_EXECUTABLE}
PROPERTY IMPORTED_LOCATION
)
if( NOT _rcc_executable )
# Weird, probably now uses Qt5::rcc which is wrong too
set( _rcc_executable ${Qt5Core_RCC_EXECUTABLE} )
endif()
# Try an empty RCC file with explicit format-version
execute_process(
COMMAND echo "<RCC version='1.0'></RCC>"
COMMAND ${Qt5Core_RCC_EXECUTABLE} --format-version 1 --list -
RESULT_VARIABLE _rcc_version_rv
ERROR_VARIABLE _rcc_version_dump
)
if ( _rcc_version_rv EQUAL 0 )
# Supported: force to the reproducible version
set( _rcc_version_support --format-version 1 )
else()
# Older Qt versions (5.7, 5.8) don't support setting the
# rcc format-version, so won't be reproducible if they
# default to version 2.
set( _rcc_version_support "" )
endif()
unset( _rcc_version_rv )
unset( _rcc_version_dump )
endif()
# Internal macro for adding the C++ / Qt translations to the
# build and install tree. Should be called only once, from
# src/calamares/CMakeLists.txt.
macro(add_calamares_translations language)
list( APPEND CALAMARES_LANGUAGES ${ARGV} )
set( calamares_i18n_qrc_content "<!DOCTYPE RCC><RCC version=\"1.0\">\n" )
# calamares and qt language files
set( calamares_i18n_qrc_content "${calamares_i18n_qrc_content}<qresource prefix=\"/lang\">\n" )
foreach( lang ${CALAMARES_LANGUAGES} )
set( calamares_i18n_qrc_content "${calamares_i18n_qrc_content}<file>calamares_${lang}.qm</file>\n" )
list( APPEND TS_FILES "${CMAKE_SOURCE_DIR}/lang/calamares_${lang}.ts" )
endforeach()
set( calamares_i18n_qrc_content "${calamares_i18n_qrc_content}</qresource>\n" )
set( calamares_i18n_qrc_content "${calamares_i18n_qrc_content}</RCC>\n" )
file( WRITE ${CMAKE_BINARY_DIR}/lang/calamares_i18n.qrc "${calamares_i18n_qrc_content}" )
qt5_add_translation(QM_FILES ${TS_FILES})
## HACK HACK HACK - around rcc limitations to allow out of source-tree building
set( trans_file calamares_i18n )
set( trans_srcfile ${CMAKE_BINARY_DIR}/lang/${trans_file}.qrc )
set( trans_infile ${CMAKE_CURRENT_BINARY_DIR}/${trans_file}.qrc )
set( trans_outfile ${CMAKE_CURRENT_BINARY_DIR}/qrc_${trans_file}.cxx )
# Copy the QRC file to the output directory
add_custom_command(
OUTPUT ${trans_infile}
COMMAND ${CMAKE_COMMAND} -E copy ${trans_srcfile} ${trans_infile}
MAIN_DEPENDENCY ${trans_srcfile}
)
# Run the resource compiler (rcc_options should already be set)
add_custom_command(
OUTPUT ${trans_outfile}
COMMAND "${Qt5Core_RCC_EXECUTABLE}"
ARGS ${rcc_options} ${_rcc_version_support} -name ${trans_file} -o ${trans_outfile} ${trans_infile}
MAIN_DEPENDENCY ${trans_infile}
DEPENDS ${QM_FILES}
)
endmacro()
# Internal macro for Python translations
#
# Translations of the Python modules that don't have their own
# lang/ subdirectories -- these are collected in top-level
# lang/python/<lang>/LC_MESSAGES/python.mo
macro(add_calamares_python_translations language)
set( CALAMARES_LANGUAGES "" )
list( APPEND CALAMARES_LANGUAGES ${ARGV} )
install_calamares_gettext_translations( python
SOURCE_DIR ${CMAKE_SOURCE_DIR}/lang/python
FILENAME python.mo
RENAME calamares-python.mo
)
endmacro()
# Installs a directory containing language-code-labeled subdirectories with
# gettext data into the appropriate system directory. Allows renaming the
@ -52,107 +147,31 @@ function( install_calamares_gettext_translations )
if( NOT TRANSLATION_RENAME )
set( TRANSLATION_RENAME "${TRANSLATION_FILENAME}" )
endif()
string( REGEX REPLACE ".mo$" ".po" TRANSLATION_SOURCE_FILENAME "${TRANSLATION_FILENAME}" )
if ( GETTEXT_FOUND AND GETTEXT_MSGFMT_EXECUTABLE )
message( STATUS "Installing gettext translations for ${TRANSLATION_NAME}")
message( STATUS " Installing ${TRANSLATION_FILENAME} from ${TRANSLATION_SOURCE_DIR}")
else()
message( WARNING "Gettext translations requested for ${TRANSLATION_NAME}, but gettext was not found." )
return()
endif()
set( TARGET_NAME calamares-gettext-translations-${NAME} )
if( NOT TARGET "${TARGET_NAME}" )
add_custom_target( "${TARGET_NAME}" ALL )
endif()
message(STATUS "Installing gettext translations for ${TRANSLATION_NAME}")
message(STATUS " Installing ${TRANSLATION_FILENAME} from ${TRANSLATION_SOURCE_DIR}")
set( TRANSLATION_NAME "${NAME}" )
set( INSTALLED_TRANSLATIONS "" )
foreach( lang ${CALAMARES_TRANSLATION_LANGUAGES} ) # Global
string( MAKE_C_IDENTIFIER "${TARGET_NAME}-${lang}" TARGET_SUBNAME )
set( lang_po "${TRANSLATION_SOURCE_DIR}/${lang}/LC_MESSAGES/${TRANSLATION_SOURCE_FILENAME}" )
set( lang_mo_dir "${CMAKE_BINARY_DIR}/lang/${lang}/LC_MESSAGES" )
set( lang_mo "${lang_mo_dir}/${TRANSLATION_RENAME}" )
set( lang_mo "${TRANSLATION_SOURCE_DIR}/${lang}/LC_MESSAGES/${TRANSLATION_FILENAME}" )
if( lang STREQUAL "en" )
message( STATUS " Skipping ${TRANSLATION_NAME} translations for en_US" )
else()
# We **don't** use the gettext macro's here because the source
# structure doesn't match: we are calling this once per language
# for all of Calamares's languages, while the gettext module
# expects it to be called once, for a given language source-dir.
#
# Using any of the gettext macros just gets us multiple rules
# for python.gmo, and it wants to use msgmerge, besides, which
# doesn't fit our Transifex workflow.
make_directory( ${lang_mo_dir} )
add_custom_command(
OUTPUT ${lang_mo}
COMMAND ${GETTEXT_MSGFMT_EXECUTABLE}
ARGS -o ${lang_mo} ${lang_po}
MAIN_DEPENDENCY ${lang_po}
)
add_custom_target( "${TARGET_SUBNAME}" DEPENDS ${lang_mo} )
add_dependencies( "${TARGET_NAME}" "${TARGET_SUBNAME}" )
else( EXISTS ${lang_mo} )
list( APPEND INSTALLED_LANGUAGES "${lang}" )
install(
FILES ${lang_mo}
DESTINATION ${CMAKE_INSTALL_LOCALEDIR}/${lang}/LC_MESSAGES/
RENAME ${TRANSLATION_RENAME}
)
# TODO: make translations available in build dir too, for
# translation when running calamares -d from builddir.
set(_build_lc ${CMAKE_BINARY_DIR}/lang/${lang}/LC_MESSAGES/)
file(COPY ${lang_mo} DESTINATION ${_build_lc})
if (NOT TRANSLATION_FILENAME STREQUAL TRANSLATION_RENAME)
file(RENAME ${_build_lc}${TRANSLATION_FILENAME} ${_build_lc}${TRANSLATION_RENAME})
endif()
endif()
endforeach()
endfunction()
set(_calamares_qrc_translations_qrc_source ${CMAKE_CURRENT_LIST_DIR}/i18n.qrc.in) # Needs to be set outside of function
function(calamares_qrc_translations basename)
set(options "")
set(oneValueArgs SUBDIRECTORY OUTPUT_VARIABLE)
set(multiValueArgs PREFIXES LANGUAGES)
cmake_parse_arguments(_qrt "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
if(NOT _qrt_OUTPUT_VARIABLE)
message(FATAL_ERROR "No output variable")
endif()
if(NOT _qrt_PREFIXES)
set(_qrt_PREFIXES "${basename}")
endif()
if(NOT _qrt_LANGUAGES)
set(_qrt_LANGUAGES ${CALAMARES_TRANSLATION_LANGUAGES})
endif()
if(NOT _qrt_SUBDIRECTORY)
set(_qrt_SUBDIRECTORY "")
endif()
set(translations_qrc_infile ${CMAKE_CURRENT_BINARY_DIR}/${basename}.qrc)
set(translations_qrc_outfile ${CMAKE_CURRENT_BINARY_DIR}/qrc_${basename}.cxx)
# Must use this variable name because of the @ substitution
set(calamares_i18n_qrc_content "")
set(calamares_i18n_ts_filelist "")
foreach(lang ${_qrt_LANGUAGES})
foreach(tlsource ${_qrt_PREFIXES})
if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/${_qrt_SUBDIRECTORY}/${tlsource}_${lang}.ts")
string(APPEND calamares_i18n_qrc_content "<file>${tlsource}_${lang}.qm</file>\n")
list(APPEND calamares_i18n_ts_filelist "${CMAKE_CURRENT_SOURCE_DIR}/${_qrt_SUBDIRECTORY}/${tlsource}_${lang}.ts")
endif()
endforeach()
endforeach()
configure_file(${_calamares_qrc_translations_qrc_source} ${translations_qrc_infile} @ONLY)
qt_add_translation(QM_FILES ${calamares_i18n_ts_filelist})
# Run the resource compiler (rcc_options should already be set)
add_custom_command(
OUTPUT ${translations_qrc_outfile}
COMMAND ${qtname}::rcc
ARGS
${rcc_options}
--format-version 1
-name ${basename}
-o ${translations_qrc_outfile}
${translations_qrc_infile}
MAIN_DEPENDENCY ${translations_qrc_infile}
DEPENDS ${QM_FILES}
)
set(${_qrt_OUTPUT_VARIABLE} ${translations_qrc_outfile} PARENT_SCOPE)
endfunction()

View File

@ -1,35 +1,34 @@
# === This file is part of Calamares - <https://calamares.io> ===
# === This file is part of Calamares - <https://github.com/calamares> ===
#
# SPDX-FileCopyrightText: 2019 Adriaan de Groot <groot@kde.org>
# SPDX-License-Identifier: BSD-2-Clause
# Calamares is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Calamares is Free Software: see the License-Identifier above.
# Calamares is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Calamares. If not, see <http://www.gnu.org/licenses/>.
#
# SPDX-License-Identifier: GPL-3.0+
# License-Filename: LICENSE
#
###
#
# Helper function for doing automoc, autouic, autorcc on targets,
# and on the corresponding .ui or .rcc files.
# Helper function for doing automoc on a target, and autoui on a .ui file.
#
# calamares_automoc(target)
# Sets AUTOMOC TRUE for a target.
# Sets AUTOMOC TRUE for a target.
#
# If the global variable CALAMARES_AUTOMOC_OPTIONS is set, uses that
# as well to set options passed to MOC. This can be used to add
# libcalamares/utils/moc-warnings.h file to the moc, which in turn
# reduces compiler warnings in generated MOC code.
# If the global variable CALAMARES_AUTOMOC_OPTIONS is set, uses that
# as well to set options passed to MOC. This can be used to add
# libcalamares/utils/moc-warnings.h file to the moc, which in turn
# reduces compiler warnings in generated MOC code.
#
# calamares_autouic(target [uifile ..])
# Sets AUTOUIC TRUE for a target.
#
# If the global variable CALAMARES_AUTOUIC_OPTIONS is set, adds that
# to the options passed to uic for each of the named uifiles.
#
# calamares_autorcc(target [rcfile ..])
# Sets AUTOUIC TRUE for a target.
#
# If the global variable CALAMARES_AUTORCC_OPTIONS is set, adds that
# to the options passed to rcc for each of the named rcfiles.
# If the global variable CALAMARES_AUTOUIC_OPTIONS is set, adds that
# to the options passed to uic.
function(calamares_automoc TARGET)
set_target_properties( ${TARGET} PROPERTIES AUTOMOC TRUE )
@ -46,12 +45,3 @@ function(calamares_autouic TARGET)
endforeach()
endif()
endfunction()
function(calamares_autorcc TARGET)
set_target_properties( ${TARGET} PROPERTIES AUTORCC TRUE )
if ( CALAMARES_AUTORCC_OPTIONS )
foreach(S ${ARGN})
set_property(SOURCE ${S} PROPERTY AUTORCC_OPTIONS "${CALAMARES_AUTORCC_OPTIONS}")
endforeach()
endif()
endfunction()

View File

@ -1,116 +0,0 @@
# === This file is part of Calamares - <https://calamares.io> ===
#
# SPDX-FileCopyrightText: 2014 Teo Mrnjavac <teo@kde.org>
# SPDX-FileCopyrightText: 2017 Adriaan de Groot <groot@kde.org>
# SPDX-License-Identifier: BSD-2-Clause
#
# Calamares is Free Software: see the License-Identifier above.
#
###
#
# This module implements the "skip modules" part of configuring
# the Calamares repository or an external-modules repository.
#
# It should not be necessary to include() this module explicitly,
# since both AddPlugin and AddModuleSubdirectory do so implicitly.
#
#
# # Usage
#
# The public API is two functions:
#
# - calamares_skip_module(reason)
# A C++ module (or any that uses CMake) can call this macro to
# add *reason* to the list of skipped modules. Typically a module
# will pass in "modulename (why)" so that it is clear **which**
# module is skipped. This macro should be called at the top-level
# of a module's CMakeLists.txt and the module should then **not**
# call calamares_add_plugin().
# - calamares_explain_skipped_modules(list...)
# This will print out all the module reasons (see above) that have
# been added to the given *listvar*. When AddModuleSubdirectory is
# used as the mechanism to add all the subdirectories in the repository
# that contain modules, with a consistent *listvar* setting,
# this will show all the modules that have been skipped.
#
# The internal API is one function:
#
# - calamares_check_skip(modulename outvar)
# Checks if the *modulename* has been listed in the global SKIP_MODULES
# variable (to skip specifically-named modules) or if there is a USE_*
# setting applicable to the module. If the module is skipped for this
# reason, a suitable entry is added to *outvar* as if
# calamares_skip_module() had been called.
#
# Best practice is to pick a variable to collect all of the skipped
# modules, and to pass the name of that variable to AddModuleSubdirectory
# in each call. After all subdirectories have been added, call
# calamares_explain_skipped_modules() with the value of that variable.
# Convenience function to indicate that a module has been skipped
# (optionally also why). Call this in the module's CMakeLists.txt
macro( calamares_skip_module )
set( SKIPPED_MODULES ${SKIPPED_MODULES} ${ARGV} PARENT_SCOPE )
endmacro()
function( calamares_explain_skipped_modules )
if ( ARGN )
message( "${ColorReset}-- Skipped modules:" )
foreach( SUBDIRECTORY ${ARGN} )
message( "${ColorReset}-- Skipped ${BoldRed}${SUBDIRECTORY}${ColorReset}." )
endforeach()
message( "" )
endif()
endfunction()
# Globally, SKIP_MODULES and USE_* affect what modules are built.
# Check if *modulename* should be skipped, and if so, set *outvar* to
# a human-readable reason for skipping it.
function( _calamares_check_skip_impl modulename outvar )
# Globally-defined SKIP_MODULES may be space- or semicolon- separated
# so convert it to a list-variable.
string( REPLACE " " ";" SKIP_LIST "${SKIP_MODULES}" )
list( FIND SKIP_LIST "${modulename}" DO_SKIP )
if( NOT DO_SKIP EQUAL -1 )
set( ${outvar} "user request" PARENT_SCOPE )
return()
endif()
# Not skipped by the global check, see if it has an applicable USE_*
if( "${modulename}" MATCHES "^[a-zA-Z0-9_]+-" )
# Split the name into <category>-<implementation>
string( REGEX REPLACE "-.*" "" _category "${modulename}" )
string( REGEX REPLACE "^[^-]+-" "" _implementation "${modulename}" )
else()
# Not a module to which USE_* applies
return()
endif()
if( "${USE_${_category}}" STREQUAL "none" )
set( ${outvar} "category ${_category} disabled" PARENT_SCOPE )
return()
elseif( "${USE_${_category}}" STREQUAL "" )
# Category not set at all or nonexistent
return()
endif()
if ( "${USE_${_category}}" STREQUAL "${_implementation}" )
# Matches, so accept this module
else()
set( ${outvar} "category ${_category} selects ${USE_${_category}}" PARENT_SCOPE )
endif()
endfunction()
# This is the public API;it calls the _impl version so that there
# is an extra intermediate scope for the subdirectory to write results into.
function( calamares_check_skip modulename outvar )
set( _skip "" )
_calamares_check_skip_impl( "${modulename}" _skip )
if ( _skip )
message( "${ColorReset}-- Skipping module ${BoldRed}${modulename} (${_skip})${ColorReset}." )
message( "" )
set( ${outvar} "${modulename} (${_skip})" PARENT_SCOPE )
endif()
endfunction()

View File

@ -1,70 +0,0 @@
# === This file is part of Calamares - <https://calamares.io> ===
#
# SPDX-FileCopyrightText: 2014 Teo Mrnjavac <teo@kde.org>
# SPDX-FileCopyrightText: 2021 Adriaan de Groot <groot@kde.org>
# SPDX-License-Identifier: BSD-2-Clause
#
###
#
# This file defines one function for extending a VERSION-like value
# with date and git information (if desired).
#
# - extend_version( version-string short_only short_var long_var )
# Calling this function will copy *version-string* (which would typically
# be a semver-style string, like "3.2.40") into the variable *short_var*.
# If *short_only* is true, then:
# - the short version is also copied into the variable *long_var*,
# If *short_only* is false, then:
# - the *version-string* plus date and git information, is copied
# into the varialbe *long_var*, in the format {version}-{date}-{hash}
#
#
function( get_git_version_info out_var )
set(CMAKE_VERSION_SOURCE "")
if(EXISTS ${CMAKE_SOURCE_DIR}/.git/HEAD)
find_program(GIT_EXECUTABLE NAMES git git.cmd)
mark_as_advanced(GIT_EXECUTABLE)
if(GIT_EXECUTABLE)
execute_process(
COMMAND ${GIT_EXECUTABLE} rev-parse --verify -q --short=8 HEAD
OUTPUT_VARIABLE head
OUTPUT_STRIP_TRAILING_WHITESPACE
WORKING_DIRECTORY ${CMAKE_SOURCE_DIR}
)
if(head)
set(CMAKE_VERSION_SOURCE "${head}")
execute_process(
COMMAND ${GIT_EXECUTABLE} update-index -q --refresh
WORKING_DIRECTORY ${CMAKE_SOURCE_DIR}
)
execute_process(
COMMAND ${GIT_EXECUTABLE} diff-index --name-only HEAD --
OUTPUT_VARIABLE dirty
OUTPUT_STRIP_TRAILING_WHITESPACE
WORKING_DIRECTORY ${CMAKE_SOURCE_DIR}
)
if(dirty)
set(CMAKE_VERSION_SOURCE "${CMAKE_VERSION_SOURCE}-dirty")
endif()
endif()
endif()
endif()
set( ${out_var} "${CMAKE_VERSION_SOURCE}" PARENT_SCOPE )
endfunction()
function( extend_version version short_only short_var long_var )
set( ${short_var} "${version}" PARENT_SCOPE )
set( _v "${version}" )
if ( NOT short_only )
string( TIMESTAMP CALAMARES_VERSION_DATE "%Y%m%d" )
if( CALAMARES_VERSION_DATE GREATER 0 )
set( _v ${_v}.${CALAMARES_VERSION_DATE} )
endif()
get_git_version_info( _gitv )
if( _gitv )
set( _v "${_v}-${_gitv}" )
endif()
endif()
set( ${long_var} "${_v}" PARENT_SCOPE )
endfunction()

View File

@ -1,11 +1,3 @@
# === This file is part of Calamares - <https://calamares.io> ===
#
# SPDX-FileCopyrightText: 2014 Teo Mrnjavac <teo@kde.org>
# SPDX-FileCopyrightText: 2017 Adriaan de Groot <groot@kde.org>
# SPDX-License-Identifier: BSD-2-Clause
#
###
#
# - Find libcrypt
# Find the libcrypt includes and the libcrypt libraries
# This module defines

View File

@ -1,5 +1,4 @@
# SPDX-FileCopyrightText: 2008,2010,2011 by Volker Lanz <vl@fidra.de>
# SPDX-License-Identifier: BSD-2-Clause
# Copyright (C) 2008,2010,2011 by Volker Lanz <vl@fidra.de>
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
@ -45,7 +44,7 @@ else (LIBPARTED_FS_RESIZE_LIBRARY)
set(LIBPARTED_LIBS ${LIBPARTED_LIBRARY})
endif (LIBPARTED_FS_RESIZE_LIBRARY)
# KDE adds -ansi to the C make flags, parted headers use GNU extensions, so
# KDE adds -ansi to the C make flags, parted headers use GNU extensions, so
# undo that
unset(CMAKE_C_FLAGS)

View File

@ -1,10 +1,3 @@
# === This file is part of Calamares - <https://calamares.io> ===
#
# SPDX-FileCopyrightText: 2018 Adriaan de Groot <groot@kde.org>
# SPDX-License-Identifier: BSD-2-Clause
#
###
#
# Locate libpwquality
# https://github.com/libpwquality/libpwquality
#
@ -13,16 +6,10 @@
# LibPWQuality_LIBRARIES, where to find the library
# LibPWQuality_INCLUDE_DIRS, where to find pwquality.h
#
find_package(PkgConfig)
include(FindPkgConfig)
include(FindPackageHandleStandardArgs)
if(PkgConfig_FOUND)
pkg_search_module(pc_pwquality QUIET pwquality)
else()
# It's just possible that the find_path and find_library will
# find it **anyway**, so let's pretend it was there.
set(pc_pwquality_FOUND ON)
endif()
pkg_search_module(pc_pwquality QUIET pwquality)
find_path(LibPWQuality_INCLUDE_DIR
NAMES pwquality.h

View File

@ -0,0 +1,177 @@
# Find PythonQt
#
# Sets PYTHONQT_FOUND, PYTHONQT_INCLUDE_DIR, PYTHONQT_LIBRARY, PYTHONQT_LIBRARIES
#
# Also sets PYTHONQT_INCLUDE_DIRS to add whatever directories
# that are needed for extensions.
#
# Python is required
find_package(PythonLibs)
if(NOT PYTHONLIBS_FOUND)
message(FATAL_ERROR "error: Python is required to build PythonQt")
endif()
# Cut X.Y[.Z] down to just X.Y
string(REGEX REPLACE
"^([0-9][0-9]*)\.([0-9][0-9]*)"
"\\1.\\2@"
_PYTHONLIBS_MAJMIN
${PYTHONLIBS_VERSION_STRING}
)
string(REGEX REPLACE
"@.*"
""
PYTHONLIBS_MAJMIN
${_PYTHONLIBS_MAJMIN}
)
if(NOT EXISTS "${PYTHONQT_INSTALL_DIR}")
find_path(PYTHONQT_INSTALL_DIR
NAMES
include/PythonQt/PythonQt.h
include/PythonQt5/PythonQt.h
DOC "Directory where PythonQt was installed.")
endif()
# XXX Since PythonQt 3.0 is not yet cmakeified, depending
# on how PythonQt is built, headers will not always be
# installed in "include/PythonQt". That is why "src"
# is added as an option. See [1] for more details.
# [1] https://github.com/commontk/CTK/pull/538#issuecomment-86106367
find_path(PYTHONQT_INCLUDE_DIR PythonQt.h
PATHS
"${PYTHONQT_INSTALL_DIR}/include/PythonQt"
"${PYTHONQT_INSTALL_DIR}/include/PythonQt5"
"${PYTHONQT_INSTALL_DIR}/src"
DOC "Path to the PythonQt include directory")
find_path(PYTHONQT_ALL_INCLUDE_DIR PythonQt_QtAll.h
PATHS
"${PYTHONQT_INCLUDE_DIR}"
"${PYTHONQT_INSTALL_DIR}"
PATH_SUFFIXES
"extensions/PythonQt_QtAll"
"src"
DOC "Path to the PythonQt 'all' header")
if ( NOT PythonQt_FIND_QUIETLY )
message( STATUS "Searching for PythonQt (PythonLibs ${PYTHONLIBS_MAJMIN}) .." )
if ( PYTHONQT_INCLUDE_DIR )
message( STATUS " .. found include ${PYTHONQT_INCLUDE_DIR}" )
message( STATUS " .. found all include ${PYTHONQT_ALL_INCLUDE_DIR}" )
endif()
endif()
# Minimum v3.1 is needed
find_library(PYTHONQT_LIBRARY_RELEASE
NAMES
PythonQt-Qt5-Python${PYTHONLIBS_MAJMIN}
PythonQt-Qt5-Python3
PythonQt
PATHS "${PYTHONQT_INSTALL_DIR}/lib"
DOC "The PythonQt library."
)
find_library(PYTHONQT_LIBRARY_DEBUG
NAMES
PythonQt-Qt5-Python${PYTHONLIBS_MAJMIN}JMIN${CTK_CMAKE_DEBUG_POSTFIX}
PythonQt-Qt5-Python${PYTHONLIBS_MAJMIN}${CMAKE_DEBUG_POSTFIX}
PythonQt-Qt5-Python${PYTHONLIBS_MAJMIN}
PythonQt-Qt5-Python3${CTK_CMAKE_DEBUG_POSTFIX}
PythonQt-Qt5-Python3${CMAKE_DEBUG_POSTFIX}
PythonQt-Qt5-Python3
PythonQt${CTK_CMAKE_DEBUG_POSTFIX}
PythonQt${CMAKE_DEBUG_POSTFIX}
PythonQt
PATHS "${PYTHONQT_INSTALL_DIR}/lib"
DOC "The PythonQt library (debug build)."
)
find_library(PYTHONQT_QTALL_LIBRARY_RELEASE
NAMES
PythonQt_QtAll-Qt5-Python${PYTHONLIBS_MAJMIN}
PythonQt_QtAll-Qt5-Python3
PythonQt_QtAll
PATHS "${PYTHONQT_INSTALL_DIR}/lib"
DOC "Full Qt bindings for the PythonQt library."
)
find_library(PYTHONQT_QTALL_LIBRARY_DEBUG
NAMES
PythonQt_QtAll-Qt5-Python${PYTHONLIBS_MAJMIN}${CTK_CMAKE_DEBUG_POSTFIX}
PythonQt_QtAll-Qt5-Python${PYTHONLIBS_MAJMIN}${CMAKE_DEBUG_POSTFIX}
PythonQt_QtAll-Qt5-Python${PYTHONLIBS_MAJMIN}
PythonQt_QtAll-Qt5-Python3${CTK_CMAKE_DEBUG_POSTFIX}
PythonQt_QtAll-Qt5-Python3${CMAKE_DEBUG_POSTFIX}
PythonQt_QtAll-Qt5-Python3
PythonQt_QtAll${CTK_CMAKE_DEBUG_POSTFIX}
PythonQt_QtAll${CMAKE_DEBUG_POSTFIX}
PythonQt_QtAll
PATHS "${PYTHONQT_INSTALL_DIR}/lib"
DOC "Full Qt bindings for the PythonQt library (debug build)."
)
set(PYTHONQT_LIBRARY)
if(PYTHONQT_LIBRARY_RELEASE)
list(APPEND PYTHONQT_LIBRARY optimized ${PYTHONQT_LIBRARY_RELEASE})
endif()
if(PYTHONQT_LIBRARY_DEBUG)
list(APPEND PYTHONQT_LIBRARY debug ${PYTHONQT_LIBRARY_DEBUG})
endif()
set(PYTHONQT_QTALL_LIBRARY)
if(PYTHONQT_QTALL_LIBRARY_RELEASE)
list(APPEND PYTHONQT_QTALL_LIBRARY optimized ${PYTHONQT_QTALL_LIBRARY_RELEASE})
endif()
if(PYTHONQT_QTALL_LIBRARY_DEBUG)
list(APPEND PYTHONQT_QTALL_LIBRARY debug ${PYTHONQT_QTALL_LIBRARY_DEBUG})
endif()
if ( NOT PythonQt_FIND_QUIETLY )
if ( PYTHONQT_LIBRARY )
message( STATUS " .. found library ${PYTHONQT_LIBRARY}" )
endif()
if ( PYTHONQT_QTALL_LIBRARY )
message( STATUS " .. found qtall ${PYTHONQT_QTALL_LIBRARY}" )
endif()
endif()
mark_as_advanced(PYTHONQT_INSTALL_DIR)
mark_as_advanced(PYTHONQT_INCLUDE_DIR)
mark_as_advanced(PYTHONQT_LIBRARY_RELEASE)
mark_as_advanced(PYTHONQT_LIBRARY_DEBUG)
mark_as_advanced(PYTHONQT_QTALL_LIBRARY_RELEASE)
mark_as_advanced(PYTHONQT_QTALL_LIBRARY_DEBUG)
# On linux, also find libutil
if(UNIX AND NOT APPLE)
find_library(PYTHONQT_LIBUTIL util)
mark_as_advanced(PYTHONQT_LIBUTIL)
endif()
# All upper case _FOUND variable is maintained for backwards compatibility.
set(PYTHONQT_FOUND 0)
set(PythonQt_FOUND 0)
if(PYTHONQT_INCLUDE_DIR AND PYTHONQT_LIBRARY AND PYTHONQT_QTALL_LIBRARY)
# Currently CMake'ified PythonQt only supports building against a python Release build.
# This applies independently of CTK build type (Release, Debug, ...)
add_definitions(-DPYTHONQT_USE_RELEASE_PYTHON_FALLBACK)
set(PYTHONQT_FOUND 1)
set(PythonQt_FOUND ${PYTHONQT_FOUND})
set(PYTHONQT_LIBRARIES ${PYTHONQT_LIBRARY} ${PYTHONQT_LIBUTIL} ${PYTHONQT_QTALL_LIBRARY})
set(PYTHONQT_INCLUDE_DIRS ${PYTHONQT_INCLUDE_DIR})
if(PYTHONQT_ALL_INCLUDE_DIR)
list(APPEND PYTHONQT_INCLUDE_DIRS ${PYTHONQT_ALL_INCLUDE_DIR})
endif()
elseif(NOT PythonQt_FIND_QUIETLY)
set(_missing "")
if (NOT PYTHONQT_INCLUDE_DIR)
list(APPEND _missing "includes")
endif()
if (NOT PYTHONQT_LIBRARY)
list(APPEND _missing "library")
endif()
if (NOT PYTHONQT_QTALL_LIBRARY)
list(APPEND _missing "qtall")
endif()
message(STATUS "PythonQt not found, missing components ${_missing}")
endif()

View File

@ -1,19 +1,9 @@
# === This file is part of Calamares - <https://calamares.io> ===
#
# SPDX-FileCopyrightText: 2014 Teo Mrnjavac <teo@kde.org>
# SPDX-FileCopyrightText: 2020 Adriaan de Groot <groot@kde.org>
# SPDX-License-Identifier: BSD-2-Clause
#
###
#
# Locate yaml-cpp
#
# This module defines
# YAMLCPP_FOUND, if false, do not try to link to yaml-cpp
# YAMLCPP_LIBRARY, where to find yaml-cpp
# YAMLCPP_INCLUDE_DIR, where to find yaml.h
# There is also one IMPORTED library target,
# yamlcpp::yamlcpp
# YAMLCPP_FOUND, if false, do not try to link to yaml-cpp
# YAMLCPP_LIBRARY, where to find yaml-cpp
# YAMLCPP_INCLUDE_DIR, where to find yaml.h
#
# By default, the dynamic libraries of yaml-cpp will be found. To find the static ones instead,
# you must set the YAMLCPP_STATIC_LIBRARY variable to TRUE before calling find_package(YamlCpp ...).
@ -21,10 +11,6 @@
# If yaml-cpp is not installed in a standard path, you can use the YAMLCPP_DIR CMake variable
# to tell CMake where yaml-cpp is.
if(TARGET yamlcpp::yamlcpp)
return()
endif()
# attempt to find static library first if this is set
if(YAMLCPP_STATIC_LIBRARY)
set(YAMLCPP_STATIC libyaml-cpp.a)
@ -62,12 +48,3 @@ find_library(YAMLCPP_LIBRARY
include(FindPackageHandleStandardArgs)
FIND_PACKAGE_HANDLE_STANDARD_ARGS(YAMLCPP DEFAULT_MSG YAMLCPP_INCLUDE_DIR YAMLCPP_LIBRARY)
mark_as_advanced(YAMLCPP_INCLUDE_DIR YAMLCPP_LIBRARY)
# Add an imported target
if( YAMLCPP_LIBRARY )
add_library( yamlcpp::yamlcpp UNKNOWN IMPORTED )
set_property( TARGET yamlcpp::yamlcpp PROPERTY IMPORTED_LOCATION ${YAMLCPP_LIBRARY} )
if ( YAMLCPP_INCLUDE_DIR )
set_property( TARGET yamlcpp::yamlcpp PROPERTY INTERFACE_INCLUDE_DIRECTORIES ${YAMLCPP_INCLUDE_DIR} )
endif()
endif()

View File

@ -0,0 +1,17 @@
# Shared CMake core for finding KPMCore
#
# This is wrapped into a CMake include file because there's a bunch of
# pre-requisites that need searching for before looking for KPMCore.
# If you just do find_package( KPMCore ) without finding the things
# it links against first, you get CMake errors.
#
#
find_package(ECM 5.10.0 REQUIRED NO_MODULE)
set(CMAKE_MODULE_PATH ${ECM_MODULE_PATH} ${CMAKE_MODULE_PATH})
include(KDEInstallDirs)
include(GenerateExportHeader)
find_package( KF5 REQUIRED CoreAddons )
find_package( KF5 REQUIRED Config I18n Service WidgetsAddons )
find_package( KPMcore 3.2 REQUIRED )

Some files were not shown because too many files have changed in this diff Show More